919 resultados para Preferential attachment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding of the structure and dynamics of the intricate network of connections among people that consumes products through Internet appears as an extremely useful asset in order to study emergent properties related to social behavior. This knowledge could be useful, for example, to improve the performance of personal recommendation algorithms. In this contribution, we analyzed five-year records of movie-rating transactions provided by Netflix, a movie rental platform where users rate movies from an online catalog. This dataset can be studied as a bipartite user-item network whose structure evolves in time. Even though several topological properties from subsets of this bipartite network have been reported with a model that combines random and preferential attachment mechanisms [Beguerisse Díaz et al., 2010], there are still many aspects worth to be explored, as they are connected to relevant phenomena underlying the evolution of the network. In this work, we test the hypothesis that bursty human behavior is essential in order to describe how a bipartite user-item network evolves in time. To that end, we propose a novel model that combines, for user nodes, a network growth prescription based on a preferential attachment mechanism acting not only in the topological domain (i.e. based on node degrees) but also in time domain. In the case of items, the model mixes degree preferential attachment and random selection. With these ingredients, the model is not only able to reproduce the asymptotic degree distribution, but also shows an excellent agreement with the Netflix data in several time-dependent topological properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The emergence of uncorrelated growing networks is proved when nodes are removed either uniformly or under the preferential survival rule recently observed in the World Wide Web evolution. To this aim, the rate equation for the joint probability of degrees is derived, and stationary symmetrical solutions are obtained, by passing to the continuum limit. When a uniformly random removal of extant nodes and linear preferential attachment of new nodes are at work, we prove that the only stationary solution corresponds to uncorrelated networks for any removal rate r ∈ (0,1). In the more general case of preferential survival of nodes, uncorrelated solutions are also obtained. These results generalize the uncorrelatedness displayed by the (undirected) Barab´asi-Albert network model to models with uniformly random and selective (against low degrees) removal of nodes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a continuum formalism for modeling growing random networks under addition and deletion of nodes based on a differential mass balance equation. As examples of its applicability, we obtain new results on the degree distribution for growing networks with a uniform attachment and deletion of nodes, and complete some recent results on growing networks with preferential attachment and uniform removal

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract The main objective of this work is to show how the choice of the temporal dimension and of the spatial structure of the population influences an artificial evolutionary process. In the field of Artificial Evolution we can observe a common trend in synchronously evolv¬ing panmictic populations, i.e., populations in which any individual can be recombined with any other individual. Already in the '90s, the works of Spiessens and Manderick, Sarma and De Jong, and Gorges-Schleuter have pointed out that, if a population is struc¬tured according to a mono- or bi-dimensional regular lattice, the evolutionary process shows a different dynamic with respect to the panmictic case. In particular, Sarma and De Jong have studied the selection pressure (i.e., the diffusion of a best individual when the only selection operator is active) induced by a regular bi-dimensional structure of the population, proposing a logistic modeling of the selection pressure curves. This model supposes that the diffusion of a best individual in a population follows an exponential law. We show that such a model is inadequate to describe the process, since the growth speed must be quadratic or sub-quadratic in the case of a bi-dimensional regular lattice. New linear and sub-quadratic models are proposed for modeling the selection pressure curves in, respectively, mono- and bi-dimensional regu¬lar structures. These models are extended to describe the process when asynchronous evolutions are employed. Different dynamics of the populations imply different search strategies of the resulting algorithm, when the evolutionary process is used to solve optimisation problems. A benchmark of both discrete and continuous test problems is used to study the search characteristics of the different topologies and updates of the populations. In the last decade, the pioneering studies of Watts and Strogatz have shown that most real networks, both in the biological and sociological worlds as well as in man-made structures, have mathematical properties that set them apart from regular and random structures. In particular, they introduced the concepts of small-world graphs, and they showed that this new family of structures has interesting computing capabilities. Populations structured according to these new topologies are proposed, and their evolutionary dynamics are studied and modeled. We also propose asynchronous evolutions for these structures, and the resulting evolutionary behaviors are investigated. Many man-made networks have grown, and are still growing incrementally, and explanations have been proposed for their actual shape, such as Albert and Barabasi's preferential attachment growth rule. However, many actual networks seem to have undergone some kind of Darwinian variation and selection. Thus, how these networks might have come to be selected is an interesting yet unanswered question. In the last part of this work, we show how a simple evolutionary algorithm can enable the emrgence o these kinds of structures for two prototypical problems of the automata networks world, the majority classification and the synchronisation problems. Synopsis L'objectif principal de ce travail est de montrer l'influence du choix de la dimension temporelle et de la structure spatiale d'une population sur un processus évolutionnaire artificiel. Dans le domaine de l'Evolution Artificielle on peut observer une tendence à évoluer d'une façon synchrone des populations panmictiques, où chaque individu peut être récombiné avec tout autre individu dans la population. Déjà dans les année '90, Spiessens et Manderick, Sarma et De Jong, et Gorges-Schleuter ont observé que, si une population possède une structure régulière mono- ou bi-dimensionnelle, le processus évolutionnaire montre une dynamique différente de celle d'une population panmictique. En particulier, Sarma et De Jong ont étudié la pression de sélection (c-à-d la diffusion d'un individu optimal quand seul l'opérateur de sélection est actif) induite par une structure régulière bi-dimensionnelle de la population, proposant une modélisation logistique des courbes de pression de sélection. Ce modèle suppose que la diffusion d'un individu optimal suit une loi exponentielle. On montre que ce modèle est inadéquat pour décrire ce phénomène, étant donné que la vitesse de croissance doit obéir à une loi quadratique ou sous-quadratique dans le cas d'une structure régulière bi-dimensionnelle. De nouveaux modèles linéaires et sous-quadratique sont proposés pour des structures mono- et bi-dimensionnelles. Ces modèles sont étendus pour décrire des processus évolutionnaires asynchrones. Différentes dynamiques de la population impliquent strategies différentes de recherche de l'algorithme résultant lorsque le processus évolutionnaire est utilisé pour résoudre des problèmes d'optimisation. Un ensemble de problèmes discrets et continus est utilisé pour étudier les charactéristiques de recherche des différentes topologies et mises à jour des populations. Ces dernières années, les études de Watts et Strogatz ont montré que beaucoup de réseaux, aussi bien dans les mondes biologiques et sociologiques que dans les structures produites par l'homme, ont des propriétés mathématiques qui les séparent à la fois des structures régulières et des structures aléatoires. En particulier, ils ont introduit la notion de graphe sm,all-world et ont montré que cette nouvelle famille de structures possède des intéressantes propriétés dynamiques. Des populations ayant ces nouvelles topologies sont proposés, et leurs dynamiques évolutionnaires sont étudiées et modélisées. Pour des populations ayant ces structures, des méthodes d'évolution asynchrone sont proposées, et la dynamique résultante est étudiée. Beaucoup de réseaux produits par l'homme se sont formés d'une façon incrémentale, et des explications pour leur forme actuelle ont été proposées, comme le preferential attachment de Albert et Barabàsi. Toutefois, beaucoup de réseaux existants doivent être le produit d'un processus de variation et sélection darwiniennes. Ainsi, la façon dont ces structures ont pu être sélectionnées est une question intéressante restée sans réponse. Dans la dernière partie de ce travail, on montre comment un simple processus évolutif artificiel permet à ce type de topologies d'émerger dans le cas de deux problèmes prototypiques des réseaux d'automates, les tâches de densité et de synchronisation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: We report an analysis of a protein network of functionally linked proteins, identified from a phylogenetic statistical analysis of complete eukaryotic genomes. Phylogenetic methods identify pairs of proteins that co-evolve on a phylogenetic tree, and have been shown to have a high probability of correctly identifying known functional links. Results: The eukaryotic correlated evolution network we derive displays the familiar power law scaling of connectivity. We introduce the use of explicit phylogenetic methods to reconstruct the ancestral presence or absence of proteins at the interior nodes of a phylogeny of eukaryote species. We find that the connectivity distribution of proteins at the point they arise on the tree and join the network follows a power law, as does the connectivity distribution of proteins at the time they are lost from the network. Proteins resident in the network acquire connections over time, but we find no evidence that 'preferential attachment' - the phenomenon of newly acquired connections in the network being more likely to be made to proteins with large numbers of connections - influences the network structure. We derive a 'variable rate of attachment' model in which proteins vary in their propensity to form network interactions independently of how many connections they have or of the total number of connections in the network, and show how this model can produce apparent power-law scaling without preferential attachment. Conclusion: A few simple rules can explain the topological structure and evolutionary changes to protein-interaction networks: most change is concentrated in satellite proteins of low connectivity and small phenotypic effect, and proteins differ in their propensity to form attachments. Given these rules of assembly, power law scaled networks naturally emerge from simple principles of selection, yielding protein interaction networks that retain a high-degree of robustness on short time scales and evolvability on longer evolutionary time scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The community of lawyers and their clients form a scale-free bipartite network that develops naturally as the outcome of the recommendation process through which lawyers form their client base. This process is an example of preferential attachment where lawyers with more clients are more likely to be recommended to new clients. Consumer litigation is an important market for lawyers. In large consumer societies, there always a signi cant amount of consumption disputes that escalate to court. In this paper we analyze a dataset of thousands of lawsuits, reconstructing the lawyer-client network embedded in the data. Analyzing the degree distribution of this network we noticed that it follows that of a scale-free network built by preferential attachment, but for a few lawyers with much larger client base than could be expected by preferential attachment. Incidentally, most of these also gured on a list put together by the judiciary of Lawyers which openly advertised the bene ts of consumer litigation. According to the code of ethics of their profession, lawyers should not stimulate clients into litigation, but it is not strictly illegal. From a network formation point of view, this stimulation can be seen as a separate growth mechanism than preferential attachment alone. In this paper we nd that this composite growth can be detected by a simple statistical test, as simulations show that lawyers which use both mechanisms quickly become the \Dragon-Kings" of the distribution of the number of clients per lawyer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we study a connection between a non-Gaussian statistics, the Kaniadakis statistics, and Complex Networks. We show that the degree distribution P(k)of a scale free-network, can be calculated using a maximization of information entropy in the context of non-gaussian statistics. As an example, a numerical analysis based on the preferential attachment growth model is discussed, as well as a numerical behavior of the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive epidemic process (DEP) on a regular lattice one-dimensional. The model is composed of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This model belongs to the category of non-equilibrium systems with an absorbing state and a phase transition between active an inactive states. We investigate the critical behavior of the DEP using an auto-adaptive algorithm to find critical points: the method of automatic searching for critical points (MASCP). We compare our results with the literature and we find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases DA =DB, DA DB. The simulations show that the DEP has the same critical exponents as are expected from field-theoretical arguments. Moreover, we find that, contrary to a renormalization group prediction, the system does not show a discontinuous phase transition in the regime o DA >DB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis we investigate physical problems which present a high degree of complexity using tools and models of Statistical Mechanics. We give a special attention to systems with long-range interactions, such as one-dimensional long-range bondpercolation, complex networks without metric and vehicular traffic. The flux in linear chain (percolation) with bond between first neighbor only happens if pc = 1, but when we consider long-range interactions , the situation is completely different, i.e., the transitions between the percolating phase and non-percolating phase happens for pc < 1. This kind of transition happens even when the system is diluted ( dilution of sites ). Some of these effects are investigated in this work, for example, the extensivity of the system, the relation between critical properties and the dilution, etc. In particular we show that the dilution does not change the universality of the system. In another work, we analyze the implications of using a power law quality distribution for vertices in the growth dynamics of a network studied by Bianconi and Barabási. It incorporates in the preferential attachment the different ability (fitness) of the nodes to compete for links. Finally, we study the vehicular traffic on road networks when it is submitted to an increasing flux of cars. In this way, we develop two models which enable the analysis of the total flux on each road as well as the flux leaving the system and the behavior of the total number of congested roads

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, we address two issues of broad conceptual and practical relevance in the study of complex networks. The first is associated with the topological characterization of networks while the second relates to dynamical processes that occur on top of them. Regarding the first line of study, we initially designed a model for networks growth where preferential attachment includes: (i) connectivity and (ii) homophily (links between sites with similar characteristics are more likely). From this, we observe that the competition between these two aspects leads to a heterogeneous pattern of connections with the topological properties of the network showing quite interesting results. In particular, we emphasize that there is a region where the characteristics of sites play an important role not only for the rate at which they get links, but also for the number of connections which occur between sites with similar and dissimilar characteristics. Finally, we investigate the spread of epidemics on the network topology developed, whereas its dissemination follows the rules of the contact process. Using Monte Carlo simulations, we show that the competition between states (infected/healthy) sites, induces a transition between an active phase (presence of sick) and an inactive (no sick). In this context, we estimate the critical point of the transition phase through the cumulant Binder and ratio between moments of the order parameter. Then, using finite size scaling analysis, we determine the critical exponents associated with this transition

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we analyse the implications of using a power law distribution of vertice's quality in the growth dynamics of a network studied by Bianconi anel Barabási. In particular, we start studying the random networks which characterize or are related to some real situations, for instance the tide movement. In this context of complex networks, we investigate several real networks, as well as we define some important concepts in the network studies. Furthermore, we present the first scale-free network model, which was proposed by Barabási et al., and a modified model studied by Bianconi and Barabási, where now the preferential attachment incorporates the different ability (fitness) of the nodes to compete for links. At the end, our results, discussions and conclusions are presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we elaborate and discuss a Complex Network model which presents connectivity scale free probability distribution (power-law degree distribution). In order to do that, we modify the rule of the preferential attachment of the Bianconi-Barabasi model, including a factor which represents the similarity of the sites. The term that corresponds to this similarity is called the affinity, and is obtained by the modulus of the difference between the fitness (or quality) of the sites. This variation in the preferential attachment generates very interesting results, by instance the time evolution of the connectivity, which follows a power-law distribution ki / ( t t0 )fi, where fi indicates the rate to the site gain connections. Certainly this depends on the affinity with other sites. Besides, we will show by numerical simulations results for the average path length and for the clustering coefficient

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work a study of social networks based on analysis of family names is presented. A basic approach to the mathematical formalism of graphs is developed and then main theoretical models for complex networks are presented aiming to support the analysis of surnames networks models. These, in turn, are worked so as to be drawn leading quantities, such as aggregation coefficient, minimum average path length and connectivity distribution. Based on these quantities, it can be stated that surnames networks are an example of complex network, showing important features such as preferential attachment and small-world character

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an algorithm for generating scale-free networks with adjustable clustering coefficient. The algorithm is based on a random walk procedure combined with a triangle generation scheme which takes into account genetic factors; this way, preferential attachment and clustering control are implemented using only local information. Simulations are presented which support the validity of the scheme, characterizing its tuning capabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diffusion controls the gaseous transport process in soils when advective transport is almost null. Knowledge of the soil structure and pore connectivity are critical issues to understand and modelling soil aeration, sequestration or emission of greenhouse gasses, volatilization of volatile organic chemicals among other phenomena. In the last decades these issues increased our attention as scientist have realize that soil is one of the most complex materials on the earth, within which many biological, physical and chemical processes that support life and affect climate change take place. A quantitative and explicit characterization of soil structure is difficult because of the complexity of the pore space. This is the main reason why most theoretical approaches to soil porosity are idealizations to simplify this system. In this work, we proposed a more realistic attempt to capture the complexity of the system developing a model that considers the size and location of pores in order to relate them into a network. In the model we interpret porous soils as heterogeneous networks where pores are represented by nodes, characterized by their size and spatial location, and the links representing flows between them. In this work we perform an analysis of the community structure of porous media of soils represented as networks. For different real soils samples, modelled as heterogeneous complex networks, spatial communities of pores have been detected depending on the values of the parameters of the porous soil model used. These types of models are named as Heterogeneous Preferential Attachment (HPA). Developing an exhaustive analysis of the model, analytical solutions are obtained for the degree densities and degree distribution of the pore networks generated by the model in the thermodynamic limit and shown that the networks exhibit similar properties to those observed in other complex networks. With the aim to study in more detail topological properties of these networks, the presence of soil pore community structures is studied. The detection of communities of pores, as groups densely connected with only sparser connections between groups, could contribute to understand the mechanisms of the diffusion phenomena in soils.