998 resultados para Potentiostatic conditions


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The so-called “Scheme of Squares”, displaying an interconnectivity of heterogeneous electron transfer and homogeneous (e.g., proton transfer) reactions, is analysed. Explicit expressions for the various partial currents under potentiostatic conditions are given. The formalism is applicable to several electrode geometries and models (e.g., semi-infinite linear diffusion, rotating disk electrodes, spherical or cylindrical systems) and the analysis is exact. The steady-state (t→∞) expressions for the current are directly given in terms of constant matrices whereas the transients are obtained as Laplace transforms that need to be inverted by approximation of numerical methods. The methodology employs a systems approach which replaces a system of partial differential equations (governing the concentrations of the several electroactive species) by an equivalent set of difference equations obeyed by the various partial currents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural and kinetic aspects of 2-D irreversible metal deposition under potentiostatic conditions are analyzed by means of dynamic Monte Carlo simulations employing embedded atom potentials for a model system. Three limiting models, all considering adatom diffusion, were employed to describe adatom deposition. The first model (A) considers adatom deposition on any free substrate site on the surface at the same rate. The second model (B) considers adatom deposition only on substrate sites which exhibit no neighboring sites occupied by adatoms. The third model (C) allows deposition at higher rates on sites presenting neighboring sites occupied by adatoms. Under the proper conditions, the coverage (theta) versus time (t) relationship for the three cases can be heuristically fitted to the functional form theta = 1 - exp(-betat(alpha)), where alpha and beta are parameters. We suggest that the value of the parameter alpha can be employed to distinguish experimentally between the three cases. While model A trivially delivers a = 1, models B and C are characterized by alpha 1, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ethanol electro-oxidation reaction was evaluated using a polycrystalline Au substrate modified with two different amounts of Pt using the galvanic exchange methodology. FTIR results suggest that Pt deposits have a greater ability to break the C-C bond present in the ethanol molecule. However, under potentiostatic conditions both modified Au surfaces undergo faster deactivation in comparison with polycrystalline platinum as indicated by the chronoamperometric results. XPS results indicate the presence of two phases depending on the Pt content. These are: (i) Pt-Au alloy and (ii) segregated Pt. The structural and electronic properties of these phases were related to the differences observed in the catalytic activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plastic solar cells bear the potential for large-scale power generation based on flexible, lightweight, inexpensive materials. Since the discovery of the photo-induced electron transfer from a conjugated polymer (electron-donor) to fullerene or its derivatives molecules (electron-acceptors), followed by the introduction of the bulk heterojunction concept which means donors and acceptors blended together to realize the fotoactive layer, materials and deposition techniques have been extensively studied. In this work, electrochemical-deposition methods of polymeric conductive films were studied in order to realize bulk heterojunction solar cells. Indium Tin Oxide (ITO) glass electrodes modified with a thin layer of poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically prepared under potentiodynamic and potentiostatic conditions; then those techniques were applied for the electrochemical co-deposition of donor and acceptor on modified ITO electrode to produce the active layer (blend). For the deposition of the electron-donor polymer the electropolymerization of many functionalized thiophene monomers was investigated while, as regards acceptors, fullerene was used first, then the study was focused on its derivative PCBM ([6,6]-phenyl-C61-butyric acid methyl ester). The polymeric films obtained (PEDOT and blend) were electrochemically and spectrophotometrically characterized and the film thicknesses were evaluated by atomic force microscopy (AFM). Finally, to check the performances and the efficiency of the realized solar cells, tests were carried out under standard conditions. Nowadays bulk heterojunction solar cells are still poorly efficient to be competitively commercialized. A challenge will be to find new materials and better deposition techniques in order to obtain better performances. The research has led to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. The efficiency of the solar cells produced in this work is even lower (lower than 1 %). Despite all, solar cells of this type are interesting and may represent a cheaper and easier alternative to traditional silicon-based solar panels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anodic oxidation of 1-(trifluoromethyl)benzene in dry acetonitrile/Bu4NBF4 under constant potential conditions led to 2-(trifluoromethyl) acetanilide in 86% yield. Other experimental conditions, as the use of constant current or the change in the supporting electrolyte were considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface pitting occurs when InP electrodes are anodized in KOH electrolytes at concentrations in the range 2 - 5 mol dm-3. The process has been investigated using atomic force microscopy (AFM) and the results correlated with cross-sectional transmission electron microscopy (TEM) and electroanalytical measurements. AFM measurements show that pitting of the surface occurs and the density of pits is observed to increase with time under both potentiodynamic and potentiostatic conditions. This indicates a progressive pit nucleation process and implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this is seen in plan view TEM images in which individual domains are seen to be at different stages of development. Analysis of the cyclic voltammograms of InP electrodes in 5 mol dm-3 KOH indicates that, above a critical potential for pit formation, the anodic current is predominantly time dependent and there is little differential dependence of the current on potential. Thus, pores continue to grow with time when the potential is high enough to maintain depletion layer breakdown conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous InP layers were formed electrochemically on (100) oriented n-InP substrates in various concentrations of aqueous KOH under dark conditions. In KOH concentrations from 2 mol dm-3 to 5 mol dm-3, a porous layer is obtained underneath a dense near-surface layer. The pores within the porous layer appear to propagate from holes through the near-surface layer. Transmission electron microscopy studies of the porous layers formed under both potentiodynamic and potentiostatic conditions show that both the thickness of the porous layer and the mean pore diameter decrease with increasing KOH concentration. The degree of porosity, estimated to be 65%, was found to remain relatively constant for all the porous layers studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the industries involving alkaline solutions in different process streams, the nature and stability of oxide films formed on the metallic surfaces determine the rates of erosion–corrosion of the equipment. In the present study the characteristics of the oxide films formed on AISI 1020 steel in a 2.75 M sodium hydroxide solution at temperatures up to 175°C, have been investigated by employing electrochemical techniques of cyclic voltammetry and chronoamperometry. The experiments were carried out in an autoclave system based upon a ‘rotating cylinder electrode’ geometry to determine the effects of turbulence on the stability of the films. The results suggest that little protection is afforded in the active region (at about −0.8 VSHE). In the passive region at low potentials (−0.6 V to −0.4 VSHE), it appears the films are compact and more stable, and therefore provide good protection. At higher potentials (>−0.4 VSHE) in the passive region, the results suggest that film formation and dissolution occur simultaneously and the increase in temperature and turbulence causes a breakdown of the passive film resulting in a situation similar to nonprotective magnetite growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Baths containing sulphuric acid as catalyst and others with selected secondary catalysts (methane sulphonic acid - MSA, SeO2, a KBrO3/KIO3 mixture, indium, uranium and commercial high speed catalysts (HEEF-25 and HEEF-405)) were studied. The secondary catalysts influenced CCE, brightness and cracking. Chromium deposition mechanisms were studied in Part II using potentiostatic and potentiodynamic electroanalytical techniques under stationary and hydrodynamic conditions. Sulphuric acid as a primary catalyst and MSA, HEEF-25, HEEF-405 and sulphosalycilic acid as co-catalysts were explored for different rotation, speeds and scan rates. Maximum current was resolved into diffusion and kinetically limited components, and a contribution towards understanding the electrochemical mechanism is proposed. Reaction kinetics were further studied for H2SO4, MSA and methane disulphonic acid catalysed systems and their influence on reaction mechanisms elaborated. Charge transfer coefficient and electrochemical reaction rate orders for the first stage of the electrodeposition process were determined. A contribution was made toward understanding of H2SO4 and MSA influence on the evolution rate of hydrogen. Anodic dissolution of chromium in the chromic acid solution was studied with a number of techniques. An electrochemical dissolution mechanism is proposed, based on the results of rotating gold ring disc experiments and scanning electron microscopy. Finally, significant increases in chromium electrodeposition rates under non-stationary conditions (PRC mode) were studied and a deposition mechanisms is elaborated based on experimental data and theoretical considerations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some aromatic 1,2-dicarbonyl compounds, i.e. 9,10-phenanthrenequinone, acenaphthenequinone and benzil, and their corresponding N-phenyl monoimines, have been reduced, using dry acetonitrile as the solvent, in the presence of sodium cyanide as a reducing agent. Comparative potentiostatic preparative-scale electrolysis is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.