999 resultados para Plasma. Cátodo-oco. Deposição. Filmes finos. Espectroscopia de emissão óptica
Resumo:
Plasma DC hollow cathode has been used for film deposition by sputtering with release of neutral atoms from the cathode. The DC Plasma Ar-H2 hollow cathode currently used in the industry has proven to be effective in cleaning surfaces and thin film deposition when compared to argon plasma. When we wish to avoid the effects of ion bombardment on the substrate discharge, it uses the post-discharge region. Were generated by discharge plasma of argon and hydrogen hollow cathode deposition of thin films of titanium on glass substrate. The optical emission spectroscopy was used for the post-discharge diagnosis. The films formed were analyzed by mechanical profilometry technique. It was observed that in the spectrum of the excitation lines of argon occurred species. There are variations in the rate of deposition of titanium on the glass substrate for different process parameters such as deposition time, distance and discharge working gases. It was noted an increase in intensity of the lines of argon compared with the lines of titanium. Deposition with argon and hydrogen in glass sample observed a higher rate deposition of titanium as more closer the sample was in the discharge
Resumo:
Many applications require that the plasma discharge is produced apart from the surface to be processed, thus preventing damage caused by bombardment and/or plasma radiation. In the post-discharge regime in various applications thermally sensitive materials can be used. In this work, active species produced by discharge and post-discharge hollow cathode were diagnosed by optical emission spectroscopy and mass spectrometry. The discharge was produced with the gases Ar and Ar - N2 gas flow ranging from 1 to 6 cm3/min and electric current between 150 to 600 mA. It was estimated that the ion density inside the hollow cathode, with 2 mm diameter ranged between 7.71 and 14.1 x 1015 cm-3. It was observed that the gas flow and the electric current changes the emission intensity of Ar and N2 species. The major ionic species detected by quadrupole mass spectrometry were Ar+ and N2+. The ratio of optical emission intensities of N2(1 +)/Ar(811 nm) was related to the partial pressure of N2 after the hollow cathode discharge at low pressure
Resumo:
In this study we used the plasma as a source of energy in the process of carbothermic reduction of rutile ore (TiO2). The rutile and graphite powders were milled for 15 h and placed in a hollow cathode discharge produced by in order to obtain titanium carbonitride directly from the reaction, was verified the influence of processing parameters of plasma temperature and time in the synthesis of TiCN. The reaction was carried out at 600, 700 and 800˚C for 3 to 4 hours in an atmosphere of nitrogen and argon. During all reactions was monitored by plasma technique of optical emission spectroscopy (EEO) to check the active species present in the process of carbothermal reduction of TiO2. The powder obtained after the reactions were characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique of EEO were detected in all reactions the spectra CO and NO, and these gas-phase resulting from the reduction of TiO2. The results of X-ray diffraction confirmed the reduction, where for all conditions studied there was evidence of early reduction of TiO2 through the emergence of intermediate oxides. In the samples reduced at 600 and 700˚C, there was only the phase Ti6O11, those reduced to 800˚C appeared Ti5O9 phases, and Ti6O11 Ti7O13, confirming that the carbothermal reduction in plasma, a reduction of the ore rutile (TiO2) in a series of intermediate titanium oxide (TinO2n-1) where n varies between 5 and 10
Resumo:
Plasma process like ionic nitriding and cathodic cage plasma nitriding are utilized in order to become hard surface of steels. The ionic nitriding is already accepted in the industry while cathodic cage plasma nitriding process is in industrial implementation stage. Those process depend of plasma parameters like electronic and ionic temperature (Te, Ti), species density (ne, ni) and of distribution function of these species. In the present work, the plasma used to those two processes has been observed through Optical Emission Spectroscopy OES technique in order to identify presents species in the treatment ambient and relatively quantify them. So plasma of typical mixtures like N2 H2 has been monitored through in order to study evolution of those species during the process. Moreover, it has been realized a systematic study about leaks, also thought OES, that accomplish the evolution of contaminant species arising because there is flux of atmosphere to inside nitriding chamber and in what conditions the species are sufficiently reduced. Finally, to describe the physic mechanism that acts on both coating techniques ionic nitriding and cathodic cage plasma nitriding
Resumo:
Plasma process like ionic nitriding and cathodic cage plasma nitriding are utilized in order to become hard surface of steels. The ionic nitriding is already accepted in the industry while cathodic cage plasma nitriding process is in industrial implementation stage. Those process depend of plasma parameters like electronic and ionic temperature (Te, Ti), species density (ne, ni) and of distribution function of these species. In the present work, the plasma used to those two processes has been observed through Optical Emission Spectroscopy OES technique in order to identify presents species in the treatment ambient and relatively quantify them. So plasma of typical mixtures like N2 H2 has been monitored through in order to study evolution of those species during the process. Moreover, it has been realized a systematic study about leaks, also thought OES, that accomplish the evolution of contaminant species arising because there is flux of atmosphere to inside nitriding chamber and in what conditions the species are sufficiently reduced. Finally, to describe the physic mechanism that acts on both coating techniques ionic nitriding and cathodic cage plasma nitriding
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present work we use a plasma jet system with a hollow cathode to deposit thin TiO2 films on silicon substrates as alternative at sol-gel, PECVD, dip-coating e magnetron sputtering techniques. The cylindrical cathode, made from pure titanium, can be negatively polarized between 0 e 1200 V and supports an electrical current of up to 1 A. An Ar/O2 mixture, with a total flux of 20 sccm and an O2 percentage ranging between 0 and 30%, is passed through a cylindrical hole machined in the cathode. The plasma parameters and your influence on the properties of deposited TiO2 films and their deposition rate was studied. When discharge occurs, titanium atoms are sputtered/evaporated. They are transported by the jet and deposited on the Si substrates located on the substrate holder facing the plasma jet system at a distance ranging between10 and 50 mm from the cathode. The working pressure was 10-3 mbar and the deposition time was 10 -60 min. Deposited films were characterized by scanning electron microscopy and atomic force microscopy to check the film uniformity and morphology and by X-ray diffraction to analyze qualitatively the phases present. Also it is presented the new dispositive denominate ionizing cage, derived from the active screen plasma nitriding (ASPN), but based in hollow cathode effect, recently developed. In this process, the sample was involved in a cage, in which the cathodic potential was applied. The samples were placed on an insulator substrate holder, remaining in a floating potential, and then it was treated in reactive plasma in hollow cathode regime. Moreover, the edge effect was completely eliminated, since the plasma was formed on the cage and not directly onto the samples and uniformity layer was getting in all sampl
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC