986 resultados para Physics education
Resumo:
This three-phase design research describes the modelling processes for DC-circuit phenomena. The first phase presents an analysis of the development of the DC-circuit historical models in the context of constructing Volta s pile at the turn of the 18th century. The second phase involves the designing of a teaching experiment for comprehensive school third graders. Among other considerations, the design work utilises the results of the first phase and research literature of pupils mental models for DC-circuit phenomena. The third phase of the research was concerned with the realisation of the planned teaching experiment. The aim of this phase was to study the development of the external representations of DC-circuit phenomena in a small group of third graders. The aim of the study has been to search for new ways to guide pupils to learn DC-circuit phenomena while emphasing understanding at the qualitative level. Thus, electricity, which has been perceived as a difficult and abstract subject, could be learnt more comprehensively. Especially, the research of younger pupils learning of electricity concepts has not been of great interest at the international level, although DC-circuit phenomena are also taught in the lower classes of comprehensive schools. The results of this study are important, because there has tended to be more teaching of natural sciences in the lower classes of comprehensive schools, and attempts are being made to develop this trend in Finland. In the theoretical part of the research an Experimental-centred representation approach, which emphasises the role of experimentalism in the development of pupil s representations, is created. According to this approach learning at the qualitative level consists of empirical operations like experimenting, observations, perception, and prequantification of nature phenomena, and modelling operations like explaining and reasoning. Besides planning teaching, the new approach can be used as an analysis tool in describing both historical modelling and the development of pupils representations. In the first phase of the study, the research question was: How did the historical models of DC-circuit phenomena develop in Volta s time? The analysis uncovered three qualitative historical models associated with the historical concept formation process. The models include conceptions of the electric circuit as a scene in the DC-circuit phenomena, the comparative electric-current phenomenon as a cause of different observable effect phenomena, and the strength of the battery as a cause of the electric-current phenomenon. These models describe the concept formation process and its phases in Volta s time. The models are portrayed in the analysis using fragments of the models, where observation-based fragments and theoretical fragements are distinguished from each other. The results emphasise the significance of the qualitative concept formation and the meaning of language in the historical modelling of DC-circuit phenomena. For this reason these viewpoints are stressed in planning the teaching experiment in the second phase of the research. In addition, the design process utilised the experimentation behind the historical models of DC-circuit phenomena In the third phase of the study the research question is as follows: How will the small group s external representations of DC-circuit phenomena develop during the teaching experiment? The main question is divided into the following two sub questions: What kind of talk exists in the small group s learning? What kinds of external representations for DC-circuit phenomena exist in the small group discourse during the teaching experiment? The analysis revealed that the teaching experiment of the small group succeeded in its aim to activate talk in the small group. The designed connection cards proved especially successful in activating talk. The connection cards are cards that represent the components of the electric circuit. In the teaching experiment the pupils constructed different connections with the connection cards and discussed, what kinds of DC-circuit phenomena would take place in the corresponding real connections. The talk of the small group was analysed by comparing two situations, firstly, when the small group discussed using connections made with the connection cards and secondly with the same connections using real components. According to the results the talk of the small group included more higher-order thinking when using the connection cards than with similar real components. In order to answer the second sub question concerning the small group s external representations that appeared in the talk during the teaching experiment; student talk was visualised by the fragment maps which incorporate the electric circuit, the electric current and the source voltage. The fragment maps represent the gradual development of the external representations of DC-circuit phenomena in the small group during the teaching experiment. The results of the study challenge the results of previous research into the abstractness and difficulty of electricity concepts. According to this research, the external representations of DC-circuit phenomena clearly developed in the small group of third graders. Furthermore, the fragment maps uncover that although the theoretical explanations of DC-circuit phenomena, which have been obtained as results of typical mental model studies, remain undeveloped, learning at the qualitative level of understanding does take place.
Resumo:
This research is connected with an education development project for the four-year-long officer education program at the National Defence University. In this curriculum physics was studied in two alternative course plans namely scientific and general. Observations connected to the later one e.g. student feedback and learning outcome gave indications that action was needed to support the course. The reform work was focused on the production of aligned course related instructional material. The learning material project produced a customized textbook set for the students of the general basic physics course. The research adapts phases that are typical in Design Based Research (DBR). The research analyses the feature requirements for physics textbook aimed at a specific sector and frames supporting instructional material development, and summarizes the experiences gained in the learning material project when the selected frames have been applied. The quality of instructional material is an essential part of qualified teaching. The goal of instructional material customization is to increase the product's customer centric nature and to enhance its function as a support media for the learning process. Textbooks are still one of the core elements in physics teaching. The idea of a textbook will remain but the form and appearance may change according to the prevailing technology. The work deals with substance connected frames (demands of a physics textbook according to the PER-viewpoint, quality thinking in educational material development), frames of university pedagogy and instructional material production processes. A wide knowledge and understanding of different frames are useful in development work, if they are to be utilized to aid inspiration without limiting new reasoning and new kinds of models. Applying customization even in the frame utilization supports creative and situation aware design and diminishes the gap between theory and practice. Generally, physics teachers produce their own supplementary instructional material. Even though customization thinking is not unknown the threshold to produce an entire textbook might be high. Even though the observations here are from the general physics course at the NDU, the research gives tools also for development in other discipline related educational contexts. This research is an example of an instructional material development work together the questions it uncovers, and presents thoughts when textbook customization is rewarding. At the same time, the research aims to further creative customization thinking in instruction and development. Key words: Physics textbook, PER (Physics Education Research), Instructional quality, Customization, Creativity
Resumo:
An education in Physics develops both strong cognitive and practical skills. These are well-matched to the needs of employers, from engineering to banking. Physics provides the foundation for all engineering and scientific disciplines including computing technologies, aerospace, communication, and also biosciences and medicine. In academe, Physics addresses fundamental questions about the universe, the nature of reality, and of the complex socio-economic systems comprising our daily lives. Yet today, there are emerging concerns about Physics education: Secondary school interest in Physics is falling, as is the number of Physics school teachers. There is clearly a crisis in physics education; recent research has identified principal factors. Starting from a review of these factors, and from recommendations of professional bodies, this paper proposes a novel solution – the use of Computer Games to teach physics to school children, to university undergraduates and to teacher-trainees.
Resumo:
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
Resumo:
This is a research paper in which we discuss “active learning” in the light of Cultural-Historical Activity Theory (CHAT), a powerful framework to analyze human activity, including teaching and learning process and the relations between education and wider human dimensions as politics, development, emancipation etc. This framework has its origin in Vygotsky's works in the psychology, supported by a Marxist perspective, but nowadays is a interdisciplinary field encompassing History, Anthropology, Psychology, Education for example.
Resumo:
Physics teachers are in a key position to form the attitudes and conceptions of future generations toward science and technology, as well as to educate future generations of scientists. Therefore, good teacher education is one of the key areas of physics departments education program. This dissertation is a contribution to the research-based development of high quality physics teacher education, designed to meet three central challenges of good teaching. The first challenge relates to the organization of physics content knowledge. The second challenge, connected to the first one, is to understand the role of experiments and models in (re)constructing the content knowledge of physics for purposes of teaching. The third challenge is to provide for pre-service physics teachers opportunities and resources for reflecting on or assessing their knowledge and experience about physics and physics education. This dissertation demonstrates how these challenges can be met when the content knowledge of physics, the relevant epistemological aspects of physics and the pedagogical knowledge of teaching and learning physics are combined. The theoretical part of this dissertation is concerned with designing two didactical reconstructions for purposes of physics teacher education: the didactical reconstruction of processes (DRoP) and the didactical reconstruction of structures (DRoS). This part starts with taking into account the required professional competencies of physics teachers, the pedagogical aspects of teaching and learning, and the benefits of the graphical ways of representing knowledge. Then it continues with the conceptual and philosophical analysis of physics, especially with the analysis of experiments and models role in constructing knowledge. This analysis is condensed in the form of the epistemological reconstruction of knowledge justification. Finally, these two parts are combined in the designing and production of the DRoP and DRoS. The DRoP captures the knowledge formation of physical concepts and laws in concise and simplified form while still retaining authenticity from the processes of how concepts have been formed. The DRoS is used for representing the structural knowledge of physics, the connections between physical concepts, quantities and laws, to varying extents. Both DRoP and DRoS are represented in graphical form by means of flow charts consisting of nodes and directed links connecting the nodes. The empirical part discusses two case studies that show how the three challenges are met through the use of DRoP and DRoS and how the outcomes of teaching solutions based on them are evaluated. The research approach is qualitative; it aims at the in-depth evaluation and understanding about the usefulness of the didactical reconstructions. The data, which were collected from the advanced course for prospective physics teachers during 20012006, consisted of DRoP and DRoS flow charts made by students and student interviews. The first case study discusses how student teachers used DRoP flow charts to understand the process of forming knowledge about the law of electromagnetic induction. The second case study discusses how student teachers learned to understand the development of physical quantities as related to the temperature concept by using DRoS flow charts. In both studies, the attention is focused on the use of DRoP and DRoS to organize knowledge and on the role of experiments and models in this organization process. The results show that students understanding about physics knowledge production improved and their knowledge became more organized and coherent. It is shown that the flow charts and the didactical reconstructions behind them had an important role in gaining these positive learning results. On the basis of the results reported here, the designed learning tools have been adopted as a standard part of the teaching solutions used in the physics teacher education courses in the Department of Physics, University of Helsinki.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We report here part of a research project developed by the Science Education Research Group, titled: "Teachers’ Pedagogical Practices and formative processes in Science and Mathematics Education" which main goal is the development of coordinated research that can generate a set of subsidies for a reflection on the processes of teacher training in Sciences and Mathematics Education. One of the objectives was to develop continuing education activities with Physics teachers, using the History and Philosophy of Science as conductors of the discussions and focus of teaching experiences carried out by them in the classroom. From data collected through a survey among local Science, Physics, Chemistry, Biology and Mathematics teachers in Bauru, a São Paulo State city, we developed a continuing education proposal titled “The History and Philosophy of Science in the Physics teachers’ pedagogical practice”, lasting 40 hours of lessons. We followed the performance of five teachers who participated in activities during the 2008 first semester and were teaching Physics at High School level. They designed proposals for short courses, taking into consideration aspects of History and Philosophy of Science and students’ alternative conceptions. Short courses were applied in real classrooms situations and accompanied by reflection meetings. This is a qualitative research, and treatment of data collected was based on content analysis, according to Bardin [1].
Resumo:
This research deals with the discussion about Physics teachers’ undergraduate education and professional performance related to the knowledge acquired during this initial education. More specifically, we try to answer questions like: How do future teachers evaluate the knowledge acquired during their initial education as in terms of specific knowledge as pedagogical knowledge? What are their formative needs and future expectatives about professional performance and the school teaching environment? Data was constituted from a sample of 26 future high school physics teachers, one semester long, that were taking the supervised curricular training in a undergraduate Physics education program (called Licenciatura in Brazil), in São Paulo State public university. Besides the final report of this training, future teachers were asked to answer a questionnaire aiming to take their conceptions about their initial education program, their formative needs, future professional expectatives and high school teaching environment. According to the future teachers, the program they were about to finish was satisfactory in terms of Physics specific contents; however, about the pedagogical content knowledge and the pedagogical practice, they showed to be unsatisfied and insecure. The majority of the questionnaire responses demonstrated that they feel lack of teaching experience. Moreover, teachers emphasize other factors related to the future professional performance: possible difficulties to deal with students’ indiscipline, schools’ bad physical structure, limited number of Physics classes in high school level, lack of didactical laboratories and also they seem to be frightened that the expertise teachers do not be collaborative with the new ones. In this sense, the research outcomes shows the necessity of discussions about questions involving teachers knowledge, related to either, the Physics conceptual domain and the pedagogical one, since it matters directly to future teachers professional performance. Discussions in this sense can also help evaluation and restructuration of programs designed to initial and continuous teachers’ education.
Resumo:
This paper defines flipped learning and then examines its practical implementation in AS and A2 level physics classes, that is, classes for 16-18 year olds. The effect of this teaching style on student learning behaviour and its impact on test results are evaluated. The paper recounts the difficulties of implementing it and evaluates student preferences. It concludes with comments about this teaching style's appropriateness for various groups of students and identifies those for whom it is not suitable. A list of useful websites is included. © 2013 IOP Publishing Ltd.
Resumo:
Among the most surprising findings in Physics Education Research is the lack of positive results on attitudinal measures, such as Colorado Learning Attitudes about Science Survey (CLASS) and Maryland Physics Expectations Survey (MPEX). The uniformity with which physics teaching manages to negatively shift attitudes toward physics learning is striking. Strategies which have been shown to improve conceptual learning, such as interactive engagement and studio-format classes, provide more authentic science experiences for students; yet do not seem to be sufficient to produce positive attitudinal results. Florida International University’s Physics Education Research Group has implemented Modeling Instruction in University Physics classes as part of an overall effort toward building a research and learning community. Modeling Instruction is explicitly designed to engage students in scientific practices that include model building, validation, and revision. Results from a preinstruction/postinstruction CLASS measurement show attitudinal improvements through both semesters of an introductory physics sequence, as well as over the entire two-course sequence. In this Brief Report, we report positive shifts from the CLASS in one section of a modeling-based introductory physics sequence, for both mechanics (N=22) and electricity and magnetism (N=23). Using the CLASS results and follow up interviews, we examine how these results reflect on modeling instruction and the unique student community and population at FIU.