5 resultados para Photorezeptorzelle


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photorezeptorzellen sind aus funktionell und morphologisch unterschiedlichen Kompartimenten aufgebaut: Einem lichtsensitiven Außensegment, das über ein nichtmotiles modifiziertes Cilium mit dem metabolisch aktiven Innensegment verbunden ist. Die Membranen des Außensegments werden kontinuierlich erneuert. Diese Prozesse erfordern die Translokation von Proteinen der Signaltransduktionskaskade vom Syntheseort im Innensegment in das Außensegment. Der intrazelluläre Transport der Proteine erfolgt durch das Verbindungscilium als einzige direkte cytoplasmatische Brücke zwischen den beiden Kompartimenten. Die Cytoskelettproteine des Verbindungsciliums sind maßgeblich an diesen Transportprozessen, sowie an der Ausbildung der Disk-Membranen und Funktion des Ciliums als Diffusionsbarriere beteiligt. Trotz dieser, für die Aufrechterhaltung der Photorezeptorzelle wichtigen Funktionen, sind bislang nur wenige molekulare Strukturkomponenten des Verbindungsciliums bekannt und funktionell charakterisiert. Um weitere Proteinkomponenten des Ciliums zu identifizieren, wurde eine biochemisch-molekularbiologische Strategie angewandt. Detergenzextrahierte Cilienapparate von Rinderphotorezeptorzellen wurden zur Immunisierung eines Kaninchens eingesetzt. Das affinitätsgereinigte Antiserum, mit Antikörpern gegen Epitope der unterschiedlichen Proteine des Verbindungsciliums, wurde anschließend zur Durchmusterung einer Rattenretina cDNA-Expressionsbank verwendet. Positive Klone wurden isoliert, sequenziert, und deren 3´- und 5´-terminale cDNA-Sequenzen in Datenbankrecherchen analysiert. Neben Klonen, die für Fragmente von bereits bekannten photorezeptorspezifischen Proteinen kodieren, Klonen mit Homologien zu EST´s, und Klonen ohne Homologien zu in Datenbanken enthaltenen Einträgen, wurden 8 cDNA-Klone isoliert, die für bisher unbekannte Cytoskelettproteine des Verbindungsciliums kodieren. Zwei dieser Proteine wurden näher charakterisiert: Das Mikrotubuli-Bindungsprotein EB2p und das Aktin-Bindungsprotein Flightless (Flip). Indirekte Immunofluoreszenzmarkierungen mit Antikörpern gegen EB1p, die mit EB2p kreuzreagieren, wurden EB-Proteine im Verbindungscilium und Basalkörper der Rezeptorzellen lokalisiert. Funktionell trägt Rn EB2p vermutlich zur Stabilisierung der axonemalen Mikrotubuli bei, und dürfte durch Interaktion mit cytoplasmatischem Dynein an retrograden Transportprozessen im Verbindungscilium beteiligt sein. Das Aktin-Bindungsprotein Flightless ist ein cytoplasmatisches Protein mit einer N-terminalen LRR-Domäne, die Protein-Protein- und Protein-Lipid-Interaktionen vermittelt. C-terminal weist Flip zwei Segmente mit Homologien zu Gelsolin auf. Indirekte Immunofluoreszenzmarkierungen und immuno-elektronenmikroskopische Analysen zeigen, daß Flip im Verbindungscilium in der subzellulären Domäne zwischen den axonemalen Mikrotubulipaarringen und der Plasmamembran lokalisiert ist. Im Außensegment der Photorezeptorzellen liegt Flip an den Disk-Membranen assoziiert vor. Flip verfügt vermutlich über zwei Funktion: Membran-assoziiert dürfte es Aktinfilamente an den Membranen der Außensegmente verankern. Im Verbindungscilium hingegen könnte es die ciliären Aktinfilamente modifizieren, die Transportwege für aktin-assoziierte Motorproteine sind. Flip und EB2p sind möglicherweise an den intrazellulären Transportprozessen durch das Verbindungscilium beteiligt.Die in der vorliegenden Arbeit angewandte Methode konnte erfolgreich zur Isolierung bislang unbekannter Proteine des Verbindungsciliums eingesetzt werden. Darüberhinaus wurde Flip auch in den ciliären Sinneszellen des Riechepithels und den mechanorezeptiven Haarzellen des Innenohrs identifiziert. Erkenntnisse über die molekulare Zusammensetzung des ciliären Cytoskeletts von Photorezeptorzellen können daher auch auf andere ciliäre Sinneszellen angewandt werden. Dies ermöglicht einen besseren Einblick in die allgemeine Funktion cilärer Cytoskelettstrukturen sensorischer Zellen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centrine sind Mitglieder einer hoch konservierten Überfamilie von Ca2+-bindenden Proteinen mit EF-Hand Motiven. Bislang sind vier Centrin-Isoformen bei Säugern beschrieben worden, die in diversen Zellen in der Regel mit Centriolen von Centrosomen oder Centrosomen-verwandten Strukturen assoziiert sind. Im Rahmen der vorliegenden Dissertation wurden die vier Centrin-Isoformen bezüglich der Expression in verschiedenen Geweben untersucht. Dabei lag der Hauptfokus auf Untersuchungen der Centrine in den Photorezeptorzellen der Retina. Analysen auf subzellulärer Ebene brachten Klarheit über die differenzielle Lokalisation der verschiedenen Isoformen in der Retina. Mit Hilfe von verschiedenen Methoden konnten Wechselwirkungspartner in der Retina identifiziert werden, die eine Rolle in der visuellen Signaltransduktionskaskade spielen. Dabei könnten Centrine einem Regelmechanismus angehören, der wichtige Translokationsprozesse dieser Proteine regelt. In den Photorezeptorzellen der Säugetierretina werden die vier Isoformen exprimiert, die in den Strukturen des Cilienapparates differenziell lokalisiert sind. Dabei beschränkt sich ihre Lokalisation entweder auf den Basalkörper (Centrin 4), auf das Verbindungscilium (Centrin 1) oder sie sind in beiden Strukturen zu finden (Centrin 2 und 3). In den nicht- Photorezeptorzellen der Retina sind die Isoformen Centrin 2 und 3 zudem an den Centriolen der Centrosomen lokalisiert. In der vorliegenden Arbeit wurde zum ersten Mal gezeigt, dass alle Centrin-Isoformen in ein und derselben Zelle, der Photorezeptorzelle, koexprimiert werden und dabei subzellulär kolokalisiert sind. Im Weiteren konnte die ubiquitäre Expression von Centrin 2 und 3 in allen untersuchten Geweben an Centrosomen bestätigt werden. Centrin 1 und 4 hingegen werden nur in Geweben mit Cilien-tragenden Zellen exprimiert. Die Funktion der Centrine wird nicht nur durch Bindung von Ca2+, sondern auch durch Phosphorylierungen reguliert. Alle Sequenzen der Centrine weisen diverse mögliche Phosphorylierungsstellen für unterschiedliche Proteinkinasen auf. Die Ergebnisse aller durchgeführten in vitro und ex vivo Phosphorylierungs „Assays“ zeigen eine licht-abhängige Phosphorylierung der Centrin-Isoformen in der Retina. Dabei war in der dunkel-adaptierten Retina die Phosphorylierung vor allem von Centrin 1 und 2 erhöht. Weiterführende Experimente mit Kinase-Inhibitoren wiesen darauf hin, dass vor allem die Proteinkinase CKII eine bedeutende Rolle bei der Centrin-Phosphorylierung in der Retina einnimmt. Centrine sind die ersten Cytoskelettkomponenten, deren Phosphorylierungsgrad lichtabhängig moduliert wird. Diese Ergebnisse weisen auf einen Signalweg, der zwischen der visuellen Signaltransduktionskaskade und der Regulation der Centrin-Aktivität vermittelt, hin. Bei der Suche nach Centrin-Bindungspartnern gelang mit Hilfe von Centrin 1 Blot „Overlay Assays“ der Durchbruch. Der neuartige Ansatz zeigte, dass ausschließlich Ca2+-aktiviertes Centrin 1 mit Proteinen aus der Retina interagierte. Nach der Identifikation eines 37 kDa-Proteins als die β-Untereinheit des visuellen G-Proteins Transducin wurden die Untersuchungen auf diesen Interaktionspartner fokussiert. Die Ergebnisse der hier durchgeführten biochemischen und biophysikalischen Protein-Protein Interaktionsexperimente zeigen insgesamt folgendes: ⇒ Alle vier Centrine interagieren mit Transducin, wobei Centrin 3 die geringste Affinität zu Transducin hat. ⇒ Die Assemblierung der Centrin•G-Protein-Komplexe ist strikt Ca2+-abhängig. ⇒ Die Centrine binden sowohl an das isolierte Gtβγ-Heterodimer als auch an den heterotrimeren Gt-holo-Proteinkomplex, nicht aber an Gtα. Die quantitativen immunoelektronenmikroskopischen Analysen zeigen im Weiteren, dass sich die Komplexe aus Transducin und Centrin 1 bis 3 wahrscheinlich in einer Subdomäne des Verbindungsciliums der Photorezeptorzellen ausbilden. Dabei dürfte die Ausbildung der Komplexe an der Regulation der lichtinduzierten Translokation von Transducin zwischen Innen- und Außensegment der Photorezeptorzellen beteiligt sein. Dieser Translokationsmechanismus wird als ein wichtiger Bestandteil der Langzeitadaption der Signaltransduktionskaskade der Säugerretina diskutiert. Der neuartige Regelmechanismus der molekularen Translokationen, in dem Centrine involviert sind, ist außergewöhnlich und dürfte über die speziellen Photorezeptorzellen hinaus von weit reichender Bedeutung sein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centrine sind kleine Ca2+-bindende Proteine aus der Familie der EF-Hand Proteine. Erstmals wurden Centrine als Hauptbestandteil der kontraktilen Flagellenwurzeln von Grünalgen beschrieben. Mittlerweile konnten Centrine in nahezu allen eukaryotischen Organismen nachgewiesen werden. In Säugetieren wurden bis zu vier Isoformen identifiziert, die an Centrosomen oder davon abgeleiteten Strukturen, wie Spindelpolkörpern und Basalkörper, aber auch in Übergangszonen von Cilien exprimiert werden. In der vorliegenden Arbeit konnte gezeigt werden, dass die Centrine im zellulären Kontext der Photorezeptorzellen nicht nur durch die Bindung von Ca2+ reguliert werden, sondern auch durch reversible Phosphorylierungen. Die Phosphorylierung der Centrin-Isoformen findet in der Retina von Vertebraten lichtabhängig während der Dunkeladaption statt. Die Protein Kinase CK2 (CK2) ist für die beschriebenen lichtabhängigen Phosphorylierungen hauptverantwortlich. Obwohl alle Centrin-Isoformen mehrere mögliche Zielsequenzen für die CK2 besitzen, kommt es nur zur Phosphorylierung einer einzigen Aminosäure in Cen1p, Cen2p und Cen4p. Im Gegensatz dazu stellt die Isoform Cen3p kein Substrat für die CK2 dar. Zudem wurden hier erstmals Phosphatasen identifiziert, die in der Lage sind Centrine zu dephosphorylieren. Die Dephosphorylierung durch die PP2Cund PP2C ist sehr spezifisch, da keine andere Phosphatase der Retina die CK2-vermittelte Phosphorylierung der Centrine rückgängig machen kann. Hoch auflösende licht- und elektronenmikroskopische Analysen zeigten erstmals, dass die Centrine sowohl mit der CK2 als auch mit der PP2C im Verbindungscilium der Photorezeptorzellen colokalisiert sind. Cen1p und CK2 sind in der Lage, direkt an Mikrotubuli zu binden, was die notwendige räumliche Nähe zwischen Enzymen und Substrat herstellt. Bisherige Arbeiten zeigten, dass alle Centrine Ca2+-abhängig mit dem visuellen G-Protein Transducin interagieren. Diese Wechselwirkung dürfte an der Regulation der lichtabhängigen Translokation des visuellen G-Proteins Transducin zwischen dem Außen- und dem Innensegment der Photorezeptorzelle beteiligt sein. In der vorliegenden Arbeit zeigten Interaktionsstudien, dass die Bindungsaffinitäten der Centrine für Transducin durch die CK2-vermittelte Phosphorylierung drastisch verringert wurden. Dieser beobachtete Effekt beruht auf deutlich verringerten Ca2+-Affinitäten der Centrin-Isoformen nach der CK2-vermittelten Phosphorylierung. In der vorliegenden Arbeit wurde ein neuartiger Regulationsmechanismus der Centrine in den Photorezeptorzellen der Vertebraten beschrieben. Centrine werden nicht nur durch Ca2+-Bindung zur Bildung von Protein Komplexen stimuliert, sondern durch die Phosphorylierung zum Auflösen dieser Komplexe angeregt. Damit reguliert die CK2-vermittelte, lichtabhängige Phosphorylierung der Centrine möglicherweise ebenfalls die adaptive Translokation des visuellen G-Proteins Transducin zwischen dem Außen- und Innensegment der Photorezeptorzellen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intraflagellar transport (IFT) is required for the assembly and maintenance of cilia. In this study we analyzed the subcellular localization of IFT proteins in retinal cells by correlative high-resolution immunofluorescence and immunoelectron microscopy. The rod photoreceptor cell was used as a model system to analyze protein distribution in cilia. To date the expression of IFT proteins has been described in the ciliary region without deciphering the precise spatial and temporal subcellular localization of IFT proteins, which was the focus of my work. rnThe establishment of the pre-embedding immunoelectron method was an important first step for the present doctoral thesis. Results of this work reveal the differential localization of IFT20, IFT52, IFT57, IFT88, IFT140 in sub-ciliary compartments and also their presence in non-ciliary compartments of retinal photoreceptor cells. Furthermore, the localization of IFT20, IFT52 and IFT57 in dendritic processes of non-ciliated neurons indicates that IFT protein complexes also operate in non-ciliated cells and may participate in intracellular vesicle trafficking in eukaryotic cells in general.rnIn addition, we have investigated the involvement of IFT proteins in the ciliogenesis of vertebrate photoreceptor cilia. Electron microscopy analyses revealed six morphologically distinct stages. The first stages are characterized by electron dense centriolar satellites and a ciliary vesicle, while the formation of a ciliary shaft and of the light sensitive outer segment disks are features of the later stages. IFT proteins were expressed during all stages of photoreceptor cell development and found to be associated with the ciliary apparatus. In addition to the centriole and basal body IFT proteins are present in the photoreceptor cytoplasm, associated with centriolar satellites, post-Golgi vesicles and with the ciliary vesicle. Therewith the data provide an evidence for the involvement of IFT proteins during ciliogenesis, including the formation of the ciliary vesicle and the elongation of the primary cilium of photoreceptor cells. Moreover, the cytoplasmic localization of IFT proteins in the absence of a ciliary shaft in early stages of ciliogenesis indicates roles of IFT proteins beyond their well-established function for IFT in mature cilia and flagella. rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende kumulative Arbeit umfasst Analysen zur Aufklärung der molekularen Grundlagen des humanen Usher-Syndroms (USH), der häufigsten Ursache kombinierter vererblicher Taub-Blindheit. Ziel dieser Arbeit war es, neue Erkenntnisse zur Funktion der USH-Proteine und den von ihnen organisierten Protein-Netzwerken in der Photorezeptorzelle zu erhalten. Dadurch sollten weitere Einsichten in die molekularen Ursachen des retinalen Phänotyps von USH gewonnen werden. Die Ergebnisse dieser Analysen wurden in einem Übersichtsartikel (I) und zwei Originalarbeiten (II, III) zusammengestellt.rn Im Übersichtsartikel (I) wurden die vorliegenden Hinweise zusammengefasst, die USH auf Grundlage der molekularen Verbindungen ebenfalls als Ciliopathien definiert. Zudem wird die Bedeutung des periciliären USH-Proteinnetzwerkes für das sensorische Cilium (Außensegment) der Photorezeptorzelle herausgestellt. rn In Publikation II wurde der Aufbau des USH1-USH2-Proteinnetzwerkes als Teil des periciliären Komplexes analysiert, der beim cargo handover von vesikulärer Fracht vom Innensegment- auf den ciliären Transport für die Photorezeptorzelle essentiell ist. Experimentell wurde Ush2a als neuer SANS-Interaktionspartner validiert. Des Weiteren wurde ein ternärer Komplex aus den USH-Proteinen SANS, Ush2a und Whirlin identifiziert, dessen Zusammensetzung durch die phosphorylierungsabhängige Interaktion zwischen SANS und Ush2a reguliert werden könnte. Dieser ternäre Komplex kann sowohl der Integrität der Zielmembran dienen als auch am Transfer von Molekülen ins Außensegment beteiligt sein.rn In Publikation III wurde das MAGUK-Protein Magi2 als neuer Interaktionspartner von SANS identifiziert und die Interaktion durch komplementäre Interaktionsassays validiert. Dabei wurde ein internes PDZ-Binde-Motiv in der SAM-Domäne von SANS identifiziert, das die Interaktion zur PDZ5-Domäne von Magi2 phosphorylierungsabhängig vermittelt. Dadurch wurde bestätigt, dass SANS durch post-translationale Modifizierung reguliert wird. Weiterführende Experimente zur Funktion des Magi2-SANS-Komplexes zeigen, dass Magi2 an Prozess der Rezeptor-vermittelten Endocytose beteiligt ist. Die Phosphorylierung von SANS durch die Kinase CK2 spielt bei der Endocytose ebenfalls eine wichtige Rolle. Der Phosphorylierungsstatus von SANS moduliert die Interaktion zu Magi2 und reguliert dadurch negativ den Prozess der Endocytose. In RNAi-Studien wurde die durch Magi2-vermittelte Endocytose darüber hinaus mit dem Prozess der Ciliogenese verknüpft. Die Analyse der subzellulären Verteilung der Interaktionspartner lokalisieren Magi2 im periciliären Komplex und assoziieren das periciliäre USH-Proteinnetzwerk dadurch mit dem Prozess der Endocytose in der ciliary pocket. Der SANS-Magi2-Komplex sollte demnach für Aufbau und Funktion des sensorischen Ciliums der Photorezeptorzelle eine wichtige Rolle spielen.rn Die Gesamtheit an Informationen, die aus den Publikationen dieser Dissertation und aus den Kooperationsprojekten (*) resultieren, haben die Kenntnisse zur zellulären Funktion der USH-Proteine und ihrer Interaktionspartner und damit über die pathogenen Mechanismen von USH erweitert. Dies bildet die Basis, um fundierte Therapiestrategien zu entwickeln.