906 resultados para Peptide bonds


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The pleiotropic effects of host defence peptides (HDPs), including the ability to kill microorganisms, enhance re-epithelialisation and increase angiogenesis, indicates a role for these important peptides as potential therapeutic agents in the treatment of chronic, non-healing wounds. However, the maintenance of peptide integrity, through resistance to degradation by the array of proteinases present at the wound site, is a prerequisite for clinical success. In this study we explored the degradation of exogenous LL-37, one such HDP, by wound fluid from diabetic foot ulcers to determine its susceptibility to proteolytic degradation. Our results suggest that LL-37 is unstable in the diabetic foot ulcer microenvironment. Following overnight treatment with wound fluid, LL-37 was completely degraded. Analysis of cleavage sites suggested potential involvement of both host- and bacterial-derived proteinases. The degradation products were shown to retain some antibacterial activity against Pseudomonas aeruginosa but were inactive against Staphylococcus aureus. In conclusion, our data suggest that stabilising selected peptide bonds within the sequence of LL-37 would represent an avenue for future research prior to clinical studies to address its potential as an exogenously-applied therapeutic in diabetic wounds. 

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La cartographie peptidique est une technique de grande importance utilisée lors de l’identification des protéines et la caractérisation des modifications post-traductionnelles des protéines. Deux méthodes sont utilisées afin de couper les protéines en peptides pour la cartographie : les méthodes chimiques et les méthodes enzymatiques. Dans ce projet, l’enzyme chymotrypsine a été utilisée pour l’hydrolyse (la digestion) des liens peptidiques. Cependant, l’autoprotéolyse des enzymes peut augmenter la complexité des échantillons, rendant ainsi ardue l’obtention de pics résolus suite à l’apparition de pics non-désirés dans la carte peptidique. Par conséquent, nous avons utilisé la réticulation des enzymes protéolytiques par réaction avec le glutaraldéhyde (GA) donnant une enzyme insoluble afin de réduire l’autoprotéolyse. L’immobilisation de la chymotrypsine par GA a été effectuée selon une méthode rapportée précédemment par le groupe Waldron. L’électrophorèse capillaire (CE) couplée à l’absorption UV-visible a été utilisée pour la séparation et la détection de peptides et pour obtenir ainsi une cartographie peptidique. Deux tampons différents ont été évalués afin d’obtenir les meilleures conditions pour la digestion de substrats protéiques par la chymotrypsine libre (soluble) ou la GAchymotrypsine et l’analyse par CE. Les cartes des peptides autoprotéolytiques ont été comparées entre les deux formats de chymotrypsine. Afin d’améliorer la cartographie peptidique, nous avons évalué trois méthodes de conditionnement du capillaire CE et deux méthodes pour stopper la digestion. Le bicarbonate d’ammonium s’est avéré être le tampon optimal pour la digestion en solution et l’utilisation d’un bain d’acétone et de glace sèche s’est avérée être la méthode optimale pour stopper la digestion. Une solution de SDS, 25 mM, dans l’étape de rinçage a été utilisée après chaque analyse CE et a permis d’améliorer la résolution des cartes peptidiques. La comparaison entre l’autoprotéolyse de la chymotrypsine libre et de celle immobilisé par GA a été effectuée par des tests utilisant une gamme de six différentes combinaisons de conditions afin d’évaluer le temps (30 et 240 min) et la température de digestion (4, 24 et 37°C). Dans ces conditions, nos résultats ont confirmé que le GA-chymotrypsine réduit l’autoprotéolyse par rapport à l’enzyme libre. La digestion (à 37°C/240 min) de deux substrats modèles par la chymotrypsine libre et immobilisée en fonction de la température de dénaturation du substrat a été étudiée. iii Avant la digestion, les substrats (l’albumine de sérum bovine, BSA, et la myoglobine) ont été dénaturés par chauffage pendant 45 min à trois températures différentes (60, 75 et 90°C). Les résultats ont démontré que la dénaturation par chauffage du BSA et de la myoglobine n’a pas amélioré la cartographie peptidique pour la GA-chymotrypsine, tandis que la digestion de ceux-ci en présence de la chymotrypsine libre a amélioré de façon quantifiable à des températures élevées. Ainsi, le chauffage du substrat à 90°C avec l’enzyme soluble facilite le dépliement partiel du substrat et sa digestion limitée, ce qui a été mieux pour la myoglobine que pour la BSA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. Results In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. Conclusion A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pivaloyl-D-prolyl-L-prolyl-L-analyl-N-methylam~de (I), C1UH32N40c4r,y stallizes in the orthorhombic space group P21212,w ith four molecules in a unit cell of dimensions a = 9.982 (l),b = 10.183 (3), c = 20.746 (2)A . The structure has been refined to R 0.048 for 1 745 observed reflections. All the peptide bonds in the molecule are trans and both the prolyl residues are in the CY-exo-conformation. The molecule assumes a highly folded conformation in which a Type II' DL bend is followed by a Type I LL bend, both stabilised by intramolecular 4 + 1 hydrogen bonds. This conformation, which has been observed for the first time, is of interest in relation to the structure of gramicidin S.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conformation of the synthetic cyclic tetrapeptide cyclo(D-Phe-Pro-Sar-Gly) has been determined in solution using the nuclear magnetic resonance technique and in the crystal state by X-ray crystallography. Results showed that the peptide exhibited two different conformations in solution, conformer 1 having cis-trans-cis-trans peptide bonds and conformer 2 having trans-cis-trans-cis peptide bonds. No intramolecular hydrogen bonds were observed in the structures. The X-ray diffraction studies showed the crystals to be orthorhombic with space group P2(1)2(1)2(1) with unit-cell dimensions, a = 5.790, b = 10.344, c = 31.446 A, Z = 4, R = 0.104 for 2301 observed reflections. The crystal structure showed only one type of conformer having cis-trans-cis-trans peptide bonds similar to the conformer 1 in solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The susceptibility of a monodeamidated RNAaseA (RNAaseAa1) towards carboxypeptidaseA , alpha-chymotrypsin and pepsin has been studied. Similar to RNAaseA, the C-terminal of RNAaseAa1 is not available for carboxypeptidaseA hydrolysis. The thermal stability of RNAaseAa1 as probed through chymotryptic digestion is found to be less than that of RNAaseA. Preliminary chromatographic analysis of the digested material, however, suggests that the nature of thermal transition might be the same in the two proteins. Pepsin inactivates RNAaseAa1 more slowly than does RNAaseA. Accordingly, less peptide bonds, almost half that of RNAaseA, are cleaved by pepsin in RNAaseAa1. The accumulation of RNAase-P type intermediates is not evident during peptic digestion of RNAaseAa1. Reaction with O-benzoquinone at low pH shows that methionines of the deamidated protein seem to have higher reactivities. These observations indicate a different structure for RNAaseAa1 at elevated temperature and low pH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two new cyclohexadepsipeptides have been isolated from the fungus Isaria. Fungal growth in solid media yielded hyphal strands from which peptide fractions were readily isolable by organic-solvent extraction. Two novel cyclodepsipeptides, isaridin A and isaridin B, have been isolated by reverse-phase HPLC, and characterized by ESI-MS and 1H-NMR. Single crystals of both peptides have been obtained, and their 3D structures were elucidated by X-ray diffraction. The isaridins contain several unusual amino acid residues. The sequences are cyclo(β-Gly-HyLeu-Pro-Phe-NMeVal-NMePhe) and cyclo(β-Gly-HyLeu-β-MePro-Phe-NMeVal-NMePhe), where NMeVal is N-methylvaline, NMePhe N-methylphenylalanine, and HyLeu hydroxyleucine (=2-hydroxy-4-methylpentanoic acid). The two peptides differ from one another at residue 3, isaridin A having an (S)-proline at this position, while β-methyl-(S)-proline (=(2S,3S)-2,3,4,5-tetrahydro-3-methyl-1H-pyrrole-2-carboxylic acid) is found in isaridin B. The solid-state conformations of both cyclic depsipeptides are characterized by the presence of two cis peptide bonds at HyLeu(2)-Pro(3)/HyLeu(2)-β-MePro(3) and NMeVal(5)-NMePhe(6), respectively. In isaridin A, a strong intramolecular H-bond is observed between Phe(4)CO⋅⋅⋅HNβ-Gly(1), and a similar, but weaker, interaction is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4). In contrast, in isaridin B, only a single intramolecular H-bond is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a beta-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presented doctoral research utilizes time-resolved spectroscopy to characterize protein dynamics and folding mechanisms. We resolve millisecond-timescale folding by coupling time-resolved fluorescence energy transfer (trFRET) to a continuous flow microfluidic mixer to obtain intramolecular distance distributions throughout the folding process. We have elucidated the folding mechanisms of two cytochromes---one that exhibits two-state folding (cytochrome cb562) and one that has both a kinetic refolding intermediate ensemble and a distinct equilibrium unfolding intermediate (cytochrome c552). Our data reveal that the distinct structural features of cytochrome c552 contribute to its thermostability.

We have also investigated intrachain contact dynamics in unfolded cytochrome cb562 by monitoring electron transfer, which occurs as the heme collides with a ruthenium photosensitizer, covalently bound to residues along the polypeptide. Intrachain diffusion for chemically denatured proteins proceeds on the microsecond timescale with an upper limit of 0.1 microseconds. The power-law dependence (slope = -1.5) of the rate constants on the number of peptide bonds between the heme and Ru complex indicate that cytochrome cb562 is minimally frustrated.

In addition, we have explored the pathway dependence of electron tunneling rates between metal sites in proteins. Our research group has converted cytochrome b562 to a c-type cytochrome with the porphyrin covalently bound to cysteine sidechains. We have investigated the effects of the changes to the protein structure (i.e., increased rigidity and potential new equatorial tunneling pathways) on the electron transfer rates, measured by transient absorption, in a series of ruthenium photosensitizer-modified proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclophilin A (CypA), a receptor for the immunosuppressive agent cyclosporin A (CsA), is a cis-trans peptidyl-prolyl isomerase (PPIase) which accelerates the cis-trans isomerization of prolyl-peptide bonds, interacts with a variety of proteins and therefore regulates their activities. One CypA (designated CfCypA) cDNA was cloned from Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of CfCypA consisted of 1,248 nucleotides with a canonical polyadenylation signal sequence AATAAA, a poly (A) tail, and an open reading frame (ORF) of 495 nucleotides encoding a polypeptide of 164 amino acids. The deduced amino acid sequence shared high similarity with CypA from the other species, indicating that CfCypA should be a new member of the CypA family. Quantitative real-time (RT) PCR was employed to assess the mRNA expression of CfCypA in various tissues and its temporal expression in haemocytes and gonad of scallops challenged with Vibrio anguillarum. The mRNA transcripts of CfCypA could be detected in all the examined tissues with highest expression level in gonad. After bacterial challenge, the expression level of CfCypA was almost unchanged in haemocytes, but up-regulated in gonad and increased to the peak (22.59-fold; P < 0.05) at 4 h post-injection, and then dropped to the original level at 8 h post-injection. These results indicated that CfCypA was constitutive expressed in haemocytes, but could be induced in gonad, and perhaps played a critical role in response to the bacterial challenge in gonad.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects in biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating G protein-coupled receptors (GPCRs). At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevents signaling. Conversely, cell-surface peptidases can also generate bioactive peptides that directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signaling. Certain peptidases can signals directly to cells, by cleaving GPCR to initiate intracellular signaling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signaling and mediate downregulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signaling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signaling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signaling in disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fibrino(geno)lytic nonhemorrhagic metalloprotease (neuwiedase) was purified from Bothrops neuwiedi snake venom by a single chromatographic step procedure on a CM-Sepharose column, Neuwiedase represented 4.5% (w/w) of the crude desiccated venom, with an approximate Mr of 20,000 and pI 5.9, As regards the amino acid composition, neuwiedase showed similarities with other metalloproteases, with high proportions of Asx, Glx, Leu, and Ser, Atomic absorption spectroscopy showed that one mole of Zn2+ and one mole of Ca2+ were present per mole olf protein. The cDNA encoding neuwiedase was isolated by RT-PCR from venom gland RNA, using oligonucleotides based on the partially determined amino-acid sequences of this metalloprotease. The fall sequence contained approximately 594 bp, which codified the 198 amino acid residues with an estimated molecular weight of 22,375. Comparison of the nucleotide and amino acid sequences of neuwiedase with those of other snake venom metalloproteases showed a high level of sequential similarity, Neuwiedase has two highly conserved characteristics sequences H(142)E(143)XXH(146)XXG(140)XXH(152) and C164I165M166. The three-dimensional structure of neuwiedase was modeled based on the crystal structure of Crotalus adamanteus Adamalysin II. This model revealed that the zinc binding site region showed a I high structural similarity with other metalloproteases,, the proteolyitc specificity, using the B beta-chain of oxidized insulin as substrate, was shown to be directed to the Ala(14)-Leu(15) and Tyr(16)-Leu(17) peptide bonds which were preferentially hydrolyzed. Neuwiedase is a A alpha,B beta fibrinogenase, Its activity upon the A alpha chain of fibrinogen was detected within 15 min of incubation. The optimal temperature and pH for the degradation of both A alpha and B beta chains were 37 degrees C and 7.4-8.0, respectively. This activity was inhibited by EDTA and 1,10-phenantroline, Neuwiedase also showed proteolytic activity upon fibrin and some components of the extracellular matrix. However, it did not show TAME esterase activity and was not able to inhibit platelet aggregation. (C) 2000 Academic Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)