926 resultados para Patch maintenance
Resumo:
The worldwide installed base of enterprise resource planning (ERP) systems has increased rapidly over the past 10 years now comprising tens of thousands of installations in large- and medium-sized organizations and millions of licensed users. Similar to traditional information systems (IS), ERP systems must be maintained and upgraded. It is therefore not surprising that ERP maintenance activities have become the largest budget provision in the IS departments of many ERP-using organizations. Yet, there has been limited study of ERP maintenance activities. Are they simply instances of traditional software maintenance activities to which traditional software maintenance research findings can be generalized? Or are they fundamentally different, such that new research, specific to ERP maintenance, is required to help alleviate the ERP maintenance burden? This paper reports a case study of a large organization that implemented ERP (an SAP system) more than three years ago. From the case study and data collected, we observe the following distinctions of ERP maintenance: (1) the ERP-using organization, in addition to addressing internally originated change-requests, also implements maintenance introduced by the vendor; (2) requests for user-support concerning the ERP system behavior, function and training constitute a main part of ERP maintenance activity; and (3) similar to the in-house software environment, enhancement is the major maintenance activity in the ERP environment, encompassing almost 64% of the total change-request effort. In light of these and other findings, we ultimately: (1) propose a clear and precise definition of ERP maintenance; (2) conclude that ERP maintenance cannot be sufficiently described by existing software maintenance taxonomies; and (3) propose a benefits-oriented taxonomy, that better represents ERP maintenance activities. Three salient dimensions (for characterizing requests) incorporated in the proposed ERP maintenance taxonomy are: (1) who is the maintenance source? (2) why is it important to service the request? and (3) what––whether there is any impact of implementing the request on the installed module(s)?
Resumo:
Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south-east Queensland. In these communities, small-scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2, changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2, total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3, fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.
Resumo:
The time for conducting Preventive Maintenance (PM) on an asset is often determined using a predefined alarm limit based on trends of a hazard function. In this paper, the authors propose using both hazard and reliability functions to improve the accuracy of the prediction particularly when the failure characteristic of the asset whole life is modelled using different failure distributions for the different stages of the life of the asset. The proposed method is validated using simulations and case studies.