1000 resultados para Paleoceanography
Resumo:
Based on the analyses of foraminifer and accelerator mass spectrometer radiocarbon dating in DGKS9603 core from mid-Okinawa Trough close to bottom, oscillation curve, which expressed the relation between the surface water temperature and the depth, has been obtained by using foraminifer analysis and calculation of FP-12E transfer function. The whole core indicated seven cold phases and eight warm phases. Obvious expression of low temperature event during Middle and Late Holocene, YD,H1,H2,H3 and H4 events, as well as the short cold phase during the middle last glacial period, implied that short shifts since 50 kaBP would have been global significance. Sedimentation rate during cold phases is usually faster than that in warm stages, with the lowest rate in Holocene, which may be connected with rising sea level and principal axial of Kuroshio Current moving to west. Volcanic activities highly developed in Okinawa Trough during the Quaternary period, thus abundant volcanic glass and pumice were well preserved.
Resumo:
North Amerlc8 W8S inundated by fJ major eplcontlnental sea during ihe C:retaceo.us Period. The sOljihw6rd transgression of th.e northern Boreal See along the ~\festern Interior Seaway resulted in a meetlng with the northward edv6nclng waters from the GUlf of Mexico (Obradovich and Cobban, 1975). Th1s link was 1n eXlstence by late Albien time and 6llowed for the comm1ngl1ng of the prol1ferous Arctic and Gulf rnar1ne faunas (F1g. 1). By early Campanlan time, there was a widening of B6ffln Bay wlth a slrnult8neous subsidence 1n the Arct1c Archlpelago and Sverdrup 6as1n (W11liam and Stelck, 1975). Williams and Burk (1964) found 6 break 1n the marines sedlmentatlon in the f1anltoba area, suggesting Bland corlnectlon from the Dlstrlct of Keewatln through eastern M6fl1toba to the lake Sl~perlor reglon, lmplying that the only dlrect connection between the Interlor Sea with Baffln Bay, was yia the Arct1c. This hiatus was also documented by Meek and Hayden (1861) ln the United states between the Niobrara and Pierre Format1ons. Jeletzky (1971) suggested that the retreat of the sea towards the east was by a serles of strong pulses resultlng in the regression of the Campanlan and M66str1chtlan seas. During ttle Cretaceous1 the r1s1ng Corl1111era caused the western shoreline of the Interlor Sea to migrate eastwards and the Cordillera'l detritus produced deltaic cornplexes from the Mackenzie Valley to Ne\N Mexlcoo The foreland basin was continually subslding and thls down\",arplng aided in the eastward m1gration of the western shorel1ne. Thls also lndicates that trle water 'tIes becom1ng deeper in the central Plains sect10n of the Seaway (Fig. 2).
Resumo:
Integrated Ocean Drilling Program (IODP) Site U1313, located at the northern boundary of the subtropical gyre in the central North Atlantic, lies within the southern part of the ice-rafted debris belt. Seventy-three palynological samples were studied from an uninterrupted interval ca. 726–603 ka (upper Marine Isotope Stage [MIS] 18 through lower MIS 15) to resolve conflicting paleoceanographic interpretations. Glacial stages were characterized by high productivity surface waters reflecting a southward shift of the Arctic Front. Sea surface salinities (SSSs) and sea surface temperatures (SSTs) were obtained by transfer functions using the Modern Analogue Technique. The lowest SSTs of 9ºC (±1.3) and 10ºC (±1.3) were recorded in glacial MIS 16 and MIS 18 respectively. However, these reconstructions are influenced by abundant heterotrophic taxa and may reflect elevated nutrient levels rather than lowered temperatures. Reworked palynomorphs uniquely indicate a Cretaceous as well as Paleozoic provenance for the first Heinrich-like events.
Resumo:
This is the first detailed study of organic-walled dinoflagellate cysts (dinocysts) and acritarchs for the latest Miocene–Middle Pleistocene of Ocean Drilling Program Site 1000 in the Caribbean Sea. Well-preserved and moderately diverse dinocysts and other palynomorphs reflect the interplay between neritic (carbonate-platform sourced) and oceanic species. The dinocyst biostratigraphy is tied to an existing marine isotope stratigraphy for the interval 5.5–2.2 Ma. For the interval 5.5–3.8 Ma, palynological samples are coupled to published sea-surface temperature estimates based on planktonic foraminiferal Mg/Ca. Changes in dinocyst assemblage composition are noted at ca. 4.6 Ma when shoaling of the Central American Seaway caused a temperature rise in the Caribbean, ca. 3.8–3.6 Ma, during the cold Marine Isotope Stage M2 when pronounced warming occurred, at ca. 2.7 Ma where possible weak cooling may reflect the onset of Northern Hemisphere glaciation, and in the Middle Pleistocene presumably reflecting global cooling and sea-level fall.
Resumo:
Combined micropaleontological and geochemical analyses of the high-sedimentation gravity core M-4G provided new centennial-scale paleoceanographic data for sapropel S1 deposition in the NE Aegean Sea during the Holocene Climatic Optimum. Sapropel layer S1a (10.2–8.0 ka) was deposited in dysoxic to oxic bottom waters characterized by a high abundance of benthic foraminiferal species tolerating surface sediment and/or pore water oxygen depletion (e.g., Chilostomella mediterranensis, Globobulimina affinis), and the presence of Uvigerina mediterranea, which thrives in oxic mesotrophic-eutrophic environments. Preservation of organic matter (OM) is inferred based on high organic carbon as well as loliolide and isololiolide contents, while the biomarker record and the abundances of eutrophic planktonic foraminifera document enhanced productivity. High inputs of terrigenous OM are attributed to north Aegean borderland riverine inputs. Both alkenone-based sea surface temperatures (SSTs) and δO18G. bulloides records indicate cooling at 8.2 ka (S1a) and ~7.8 ka (S1 interruption). Sapropelic layer S1b (7.7–6.4 ka) is characterized by rather oxic conditions; abundances of foraminiferal species tolerant to oxygen depletion are very low compared with the U. mediterranea rise. Strongly fluctuating SSTs demonstrate repeated cooling and associated dense water formation, with a major event at 7.4 ka followed by cold spells at 7.0, 6.8, and 6.5 ka. The prominent rise of the carbon preference index within the S1b layer indicates the delivery of less degraded terrestrial OM. The increase of algal biomarkers, labile OM-feeding foraminifera and eutrophic planktonic species pinpoints an enhanced in situ marine productivity, promoted by more efficient vertical convection due to repeated cold events. The associated contributions of labile marine OM along with fresher terrestrial OM inputs after ~7.7 ka imply sources alternative/additional to the north Aegean riverine borderland sources for the influx of organic matter in the south Limnos Basin, plausibly related to the inflow of highly productive Marmara/Black Sea waters.
Resumo:
Deep Sea Drilling Project Site 480 (27°54.10’N, 111°39.34’W; 655 m water depth) contains a high resolution record of paleoceanographic change of the past 15 000 years for the Guaymas Basin, a region of very high diatom productivity within the central Gulf of California. Analyses of diatoms and silicoflagellates were completed on samples spaced every 40-50 yr, whereas ICP-AES geochemical analyses were completed on alternate samples (sample spacing 80-100 yr). The Bolling-Allerod interval (14.6-12.9 ka) (note, ka refers to 1000 calendar years BP throughout this report) is characterized by an increase in biogenic silica and a decline in calcium carbonate relative to surrounding intervals, suggesting conditions somewhat similar to those of today. The Younger Dryas event (12.9-11.6 ka) is marked by a major drop in biogenic silica and an increase in calcium carbonate. Increasing relative percentage contributions of Azpeitia nodulifera and Dictyocha perlaevis (a tropical diatom and silicoflagellate, respectively) and reduced numbers of the silicoflagellate Octactis pulchra are supportive of reduced upwelling of nutrient-rich waters. Between 10.6 and 10.0 ka, calcium carbonate and A. nodulifera abruptly decline at DSDP 480, while Roperia tesselata, a diatom indicative of winter upwelling in the modern-day Gulf, increases sharply in numbers. A nearly coincident increase in the silicoflagellate Dictyocha stapedia suggests that waters above DSDP 480 were more similar to the cooler and slightly more saline waters of the northern Gulf during much of the early and middle parts of the Holocene (~10 to 3.2 ka). At about 6.2 ka a stepwise increase in biogenic silica and the reappearance of the tropical diatom A. nodulifera marks a major change in oceanographic conditions in the Gulf. A winter shift to more northwesterly winds may have occurred at this time along with the onset of periodic northward excursions (El Nino-driven?) of the North Equatorial Countercurrent during the summer. Beginning between 2.8 and 2.4 ka, the amplitude of biogenic silica and wt% Fe, Al, and Ti (proxies of terrigenous input) increase, possibly reflecting intensification of ENSO cycles and the establishment of modern oceanographic conditions in the Gulf. Increased numbers of O. pulchra after 2.8 ka suggest enhanced spring upwelling.
Resumo:
Middle Eocene to Late Oligocene sediments from near the crest (Site 689B, water depth 2080 m) and flank (water depth 2914 m) of the Maud Rise (62°S) have been investigated by coarse fraction analysis and have revealed the following: (1) The middle Eocene (50-40 Ma) was a period of pure carbonate sedimentation, with good preservation of carbonate microfossils. No opal > 40 µm is present. (2) In the late Eocene (40-36.5 Ma) opal fossils (mainly radiolaria, and some diatoms > 40 µm) appeared for the first time. Three maxima in opal sedimentation (Eocene/Oligocene boundary, middle early Oligocene and early/late Oligocene boundary) are separated by increases in carbonate sedimentation. The dissolution of carbonate fossils is strong in the opal-rich layers. Opal sedimentation is attributed to cooling and probably more vigorous atmospheric circulation and increased upwelling. (3) Carbonate dissolution increased with water depth in the Oligocene, whereas in the middle Eocene excellent carbonate preservation in the deeper Site 690B and stronger dissolution in the shallower Site 689B is attributed to different bottom-water characteristics. The middle Eocene bottom water probably was formed by strong evaporation at low latitudes, whereas by the earliest Oligocene formation of Antarctic Bottom Water (AABW) had set in. (4) Current influence, not on top but on the flank of the Maud Rise, could be recorded by means of larger grain sizes of benthonic and planktonic microfossils. (5) Ice-rafted debris was not found. Quartz and other minerals are very rare and not larger than 125 µm and may have been supplied by ice as well as by wind or by deep currents. Mica contents were up to 10 times higher in the middle Eocene on the flank compared to on the crest of the Maud Rise, indicating deep current supply.
Resumo:
The modern subarctic Pacific is characterized by a steep salinity-driven surface water stratification, which hampers the supply of saline and nutrient-rich deeper waters into the euphotic zone, limiting productivity. However, the strength of the halocline might have varied in the past. Here, we present diatom oxygen (d18Odiat) and silicon (d30Sidiat) stable isotope data from the open subarctic North-East (NE) Pacific (SO202-27-6; Gulf of Alaska), in combination with other proxy data (Neogloboquadrina pachydermasin d18O, biogenic opal, Ca and Fe intensities, IRD), to evaluate changes in surface water hydrography and productivity during Marine Isotope Stage (MIS) 3, characterized by millennial-scale temperature changes (Dansgaard-Oeschger (D-O) cycles) documented in Greenland ice cores.
Resumo:
Deep Sea Drilling Project Site 480 (27°54.10'N, 111°39.34'W; 655 m water depth) contains a high resolution record of paleoceanographic change of the past 15000 years for the Guaymas Basin, a region of very high diatom productivity within the central Gulf of California. Analyses of diatoms and silicoflagellates were completed on samples spaced every 40-50 yr, whereas ICP-AES geochemical analyses were completed on alternate samples (sample spacing 80-100 yr). The Bolling-Allerod interval (14.6-12.9 ka) (note, ka refers to 1000 calendar years BP throughout this report) is characterized by an increase in biogenic silica and a decline in calcium carbonate relative to surrounding intervals, suggesting conditions somewhat similar to those of today. The Younger Dryas event (12.9-11.6 ka) is marked by a major drop in biogenic silica and an increase in calcium carbonate. Increasing relative percentage contributions of Azpeitia nodulifera and Dictyocha perlaevis (a tropical diatom and silicoflagellate, respectively) and reduced numbers of the silicoflagellate Octactis pulchra are supportive of reduced upwelling of nutrient-rich waters. Between 10.6 and 10.0 ka, calcium carbonate and A. nodulifera abruptly decline at DSDP 480, while Roperia tesselata, a diatom indicative of winter upwelling in the modern-day Gulf, increases sharply in numbers. A nearly coincident increase in the silicoflagellate Dictyocha stapedia suggests that waters above DSDP 480 were more similar to the cooler and slightly more saline waters of the northern Gulf during much of the early and middle parts of the Holocene (~10 to 3.2 ka). At about 6.2 ka a stepwise increase in biogenic silica and the reappearance of the tropical diatom A. nodulifera marks a major change in oceanographic conditions in the Gulf. A winter shift to more northwesterly winds may have occurred at this time along with the onset of periodic northward excursions (El Nino-driven?) of the North Equatorial Countercurrent during the summer. Beginning between 2.8 and 2.4 ka, the amplitude of biogenic silica and wt% Fe, Al, and Ti (proxies of terrigenous input) increase, possibly reflecting intensification of ENSO cycles and the establishment of modern oceanographic conditions in the Gulf. Increased numbers of O. pulchra after 2.8 ka suggest enhanced spring upwelling.
Resumo:
The glacial-to-Holocene evolution of subarctic Pacific surface water stratification and silicic acid (Si) dynamics is investigated based on new combined diatom oxygen (d18Odiat) and silicon (d30Sidiat) isotope records, along with new biogenic opal, subsurface foraminiferal d18O, alkenone-based sea surface temperature, sea ice, diatom, and core logging data from the NE Pacific. Our results suggest that d18Odiat values are primarily influenced by changes in freshwater discharge from the Cordilleran Ice Sheet (CIS), while corresponding d30Sidiat are primarily influenced by changes in Si supply to surface waters. Our data indicate enhanced glacial to mid Heinrich Stadial 1 (HS1) NE Pacific surface water stratification, generally limiting the Si supply to surface waters. However, we suggest that an increase in Si supply during early HS1, when surface waters were still stratified, is linked to increased North Pacific Intermediate Water formation. The coincidence between fresh surface waters during HS1 and enhanced ice-rafted debris sedimentation in the North Atlantic indicates a close link between CIS and Laurentide Ice Sheet dynamics and a dominant atmospheric control on CIS deglaciation. The Bølling/Allerød (B/A) is characterized by destratification in the subarctic Pacific and an increased supply of saline, Si-rich waters to surface waters. This change toward increased convection occurred prior to the Bølling warming and is likely triggered by a switch to sea ice-free conditions during late HS1. Our results furthermore indicate a decreased efficiency of the biological pump during late HS1 and the B/A (possibly also the Younger Dryas), suggesting that the subarctic Pacific has then been a source region of atmospheric CO2.
Resumo:
IMAGES core MD01-2416 (51°N, 168°E) provides the first centennial-scale multiproxy record of Holocene variation in North Pacific sea-surface temperature (SST), salinity, and biogenic productivity. Our results reveal a gradual decrease in subarctic SST by 3-5 °C from 11.1 to 4.2 ka and a stepwise long-term decrease in sea surface salinity (SSS) by 2-3 p.s.u. Early Holocene SSS were as high as in the modern subtropical Pacific. The steep halocline and stratification that is characteristic of the present-day subarctic North Pacific surface ocean is a fairly recent feature, developed as a product of mid-Holocene environmental change. High SSS matched a salient productivity maximum of biogenic opal during Bølling-to-Early Holocene times, reaching levels similar to those observed during preglacial times in the warm mid-Pliocene prior to 2.73 Ma. Similar productivity spikes marked every preceding glacial termination of the last 800 ka, indicating recurrent short-term events of mid-Pliocene-style intense upwelling of nutrient-rich Pacific Deepwater in the Pleistocene. Such events led to a repeated exposure of CO2-rich deepwater at the ocean surface facilitating a transient CO2 release to the atmosphere, but the timing and duration of these events repudiate a long-term influence of the subarctic North Pacific on global atmospheric CO2 concentration.
Resumo:
IEECAS SKLLQG