856 resultados para Oxidative stress in epilepsy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Importance of the field: Reactive oxygen species (ROS) occur as natural by-products of oxygen metabolism and have important cellular functions. Normally, the cell is able to maintain an adequate balance between the formation and removal of ROS either via anti-oxidants or through the use specific enzymatic pathways. However, if this balance is disturbed, oxidative stress may occur in the cell, a situation linked to the pathogenesis of many diseases, including cancer. Areas covered in this review: HDACs are important regulators of many oxidative stress pathways including those involved with both sensing and coordinating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by histone deacetylases may play critical roles in cancer progression. What the reader will gain: In this review we discuss the notion that targeting HDACs may be a useful therapeutic avenue in the treatment of oxidative stress in cancer, using chronic obstructive pulmonary disease (COPD), NSCLC and hepatocellular carcinoma (HCC) as examples to illustrate this possibility. Take home message: Epigenetic mechanisms may be an important new therapeutic avenue for targeting oxidative stress in cancer. © 2010 Informa UK, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Training for and competing in ultraendurance exercise events is associated with an improvement in endogenous antioxidant defenses as well as increased oxidative stress. However, consequences on health are currently unclear. Purpose: We aimed to examine the impact of training- and acute exercise-induced changes in the antioxidant capacity on the oxidant/antioxidant balance after an ironman triathlon and whether there are indications for sustained oxidative damage. Methods: Blood samples were taken from 42 well-trained male triathletes 2 d before an ironman triathlon, then immediately postrace, 1, 5, and 19 d later. Blood was analyzed for conjugated dienes (CD), malondialdehyde (MDA), oxidized low-density lipoprotein (oxLDL), oxLDL:LDL ratio, advanced oxidation protein products (AOPP), AOPP:total protein (TP) ratio, Trolox equivalent antioxidant capacity (TEAC), uric acid (UA) in plasma, and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in erythrocytes. Results: Immediately postrace, there were significant increases in CD, AOPP, TEAC, UA (for all P < 0.001), and AOPP:TP (P < 0.01). MDA rose significantly (P < 0.01) 1 d postrace, whereas CD (P < 0.01), AOPP (P = 0.01), AOPP:TP (P < 0.05), and TEAC (P < 0.001) remained elevated. OxLDL:LDL trended to increase, whereas oxLDL significantly (P < 0.01) decreased 1 d postrace. Except for GSH-Px (P = 0.08), activities of SOD (P < 0.001) and CAT (P < 0.05) significantly decreased postrace. All oxidative stress markers had returned to prerace values 5 d postrace. Furthermore, several relationships between training status and oxidative stress markers, TEAC, and antioxidant enzyme activities were noted. Conclusions: This study indicates that despite a temporary increase in most (but not all) oxidative stress markers, there is no persistent oxidative stress in response to an ironman triathlon, probably due to training- and exercise-induced protective alterations in the antioxidant defense system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study was undertaken to evaluate the neuroprotective activity of Wedelia calendulacea against cerebral ischemia/reperfusion induced oxidative stress in the rats. Materials and Methods: The global cerebral ischemia was induced in male albino Wistar rats by occluding the bilateral carotid arteries for 30 min followed by 1 h and 4 h reperfusion. At various times of reperfusion, the histopathological changes and the levels of malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GST), and hydrogen peroxide (H(2)O(2)) activity and brain water content were measured. Results: The ischemic changes were preceded by increase in concentration of MDA, hydrogen peroxide and followed by decreased GPx, GR, and GST activity. Treatment with W. calendulacea significantly attenuated ischemia-induced oxidative stress. W. calendulacea administration markedly reversed and restored to near normal level in the groups pre-treated with methanolic extract (250 and 500 mg/kg, given orally in single and double dose/day for 10 days) in dose-dependent way. Similarly, W. calendulacea reversed the brain water content in the ischemia reperfusion animals. The neurodegenaration also conformed by the histopathological changes in the cerebral-ischemic animals. Conclusion: The findings from the present investigation reveal that W. calendulacea protects neurons from global cerebral-ischemic injury in rat by attenuating oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many unicellular green algae can become yellow or red in various natural habitats due to mass accumulation of a secondary carotenoid, such as lutein, or astaxanthin. The accumulation of secondary carotenoids is generally thought to be a survival strategy of the algae under photo-oxidative stress or other adverse environmental conditions. The physiological role of the carotenoids in stress response is less well understood at the subcellular or molecular level. In this study, a stable astaxanthin overproduction mutant (MT 2877) was isolated by chemical mutagenesis of a wild type (WT) of the green microalga Haematococcus pluvialis Flotow NIES-144. MT 2877 was identical to the WT with respect to morphology, pigment composition, and growth kinetics during the early vegetative stage of the life cycle. However, it had the ability to synthesize and accumulate about twice the astaxanthin content of the WT under high light, or under high light in the presence of excess amounts of ferrous sulphate and sodium acetate. Under stress, the mutant exhibited higher photosynthetic activities than the WT, based on considerably higher chlorophyll fluorescence induction, chlorophyll autofluorescence intensities, and oxygen evolution rates. Cell mortality caused by stress was reduced by half in the mutant culture compared with the WT. Enhanced protection of the mutant against stress is attributed to its accelerated carotenogenesis and accumulation of astaxanthin. Our results suggest that MT 2877, or other astaxanthin overproduction Haematococcus mutants, may offer dual benefits, as compared with the wild type, by increasing cellular astaxanthin content while reducing cell mortality during stress-induced carotenogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the sub-lethal toxicity of hexabromocyclododecane (HBCDD) in fish. Adult Chinese rare minnows as in vivo models were exposed to waterborne HBCDD from 1 to 500 mu g/l for 14, 28 and 42 days. Hepatic CYP1A1 (ethoxyresorufin-O-deethylase, EROD) and CYP2B1 (pentaoxyresorufin-O-depentylase, PROD) activities were measured. At the same time, molecular biomarkers of oxidative stress were also assayed in the brain, including reactive oxygen species (ROS), lipid peroxidation products (thiobarbituric acid-reactive substances, TBARS), DNA damage and protein carbonyl, as well as superoxide dismutase (SOD) activity and glutathione (GSH) content. DNA damage was evaluated using the Comet assay on erythrocytes. Besides, the content of HBCDD in whole fish was determined after 42 days exposure. The results show that HBCDD could induce EROD and PROD at 500 mu g/l after 28 days exposure, and at 100 to 500 mu g/l after 42 days exposure (P < 0.05), respectively. ROS formation in fish brain was observed to be increased in both time- and dose-dependent manner due to HBCDD exposure. The significant increases in TBARS and protein carbonyl contents occurred in fish brain after 28 and 42 days exposure (P < 0.05). Significant DNA damage in erythrocytes by Comet assay was also found in the 100-500 mu g/l exposure groups (P < 0.05) after 42 days exposure. Moreover, significant depletion in brain GSH content occurred in all treated groups (P < 0.05) and apparent inhibition in SOD activity in brain was observed in the groups of 10-500 mu g/l concentrations during 42 days exposure. The results demonstrate that increasing duration of HBCDD exposure induced EROD and PROD activities, caused excess ROS formation, finally resulted in oxidative damage to lipids, proteins and DNA and decreased antioxidant capacities in fish. Chemical analysis of HBCDD in whole fish showed accumulation up to 654 mu g/g wet weight. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The keystone aquatic organism Daphnia magna is extensively used to assess the toxicity of chemicals. This has recently lead to an increase in the omics literature focusing on daphnids, an increase fuelled by the sequencing of the Daphnia pulex genome. Yet, no omics study has looked directly at oxidative stress (OS) in daphnids, even though OS is of primary importance in the response of aquatic organisms to their changing environment and is often induced by anthropogenic xenobiotics. This thesis thus focuses on the application of redox-proteomics, the study of the oxidative modification of proteins, to D. magna Specifically, daphnids were exposed to copper or paraquat, two well studied prooxidants, and protein carbonyls were labelled with fluorescein-5-thiosemicarbazide prior to twodimensional electrophoresis (2DE). This showed clearly that both compounds affect a different portion of the proteome. The identified proteins indicated that energy metabolism was affected by paraquat, while copper induced a reduction of the heat shock response (heat shock proteins, proteases and chaperones) a counterintuitive result which may be adaptative to metal toxicity in arthropods. The same approach was then applied to the study of the toxicity mechanism of silver nanoparticles (AgNP), an increasingly utilised form of silver with expected environmental toxicity, and its comparison to silver nitrate. The results demonstrate that, although less toxic than silver ions, AgNP toxicity functions through a different mechanism. AgNP toxicity is thus not a product of silver dissolution and increased protein carbonylation indicates that AgNP cause OS. Interestingly three of the four tested compounds altered vitellogenin levels and oxidation. Vitellogenins could thus represent an interesting subproteome for the detection of stress in daphnids. Finally, an experiment with oxidised BSA demonstrates the applicability of solid phase hydrazide in the enrichment of undigested carbonylated proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earlier studies in adults have indicated that increased oxidative stress may occur in the blood and airways of asthmatic subjects. Therefore the aim of this study was to compare the concentrations of antioxidants and protein carbonyls in bronchoalveolar lavage fluid of clinically stable atopic asthmatic children (AA, n = 78) with our recently published reference intervals for nonasthmatic children (C, n = 124). Additionally, lipid peroxidation products (malondialdehyde) in bronchoalveolar lavage fluid and several antioxidants in plasma were determined. Bronchoalveolar lavage concentrations (median and interquartile range) of ascorbate [AA: 0.433 (0.294-0.678) versus C: 0.418 (0.253-0.646) micromol/L], urate [AA: 0.585 (0.412-0.996) versus C: 0.511 (0.372-0.687) micromol/L], alpha-tocopherol [AA: 0.025 (0.014-0.031) versus C: 0.017 (0.017-0.260) micromol/L], and oxidized proteins as reflected by protein carbonyls [AA: 1.222 (0.970-1.635) versus C: 1.243 (0.813-1.685) nmol/mg protein] were similar in both groups (p > 0.05 in all cases). The concentration of protein carbonyls correlated significantly with the number of eosinophils, mast cells, and macrophages in AA children only. Concentrations of oxidized proteins and lipid peroxidation products (malondialdehyde) correlated significantly in AA children (r = 0.614, n = 11, p = 0.044). Serum concentrations of ascorbate, urate, retinol, alpha-tocopherol, beta-carotene, and lycopene were similar in both groups whereas alpha-carotene was significantly reduced in asthmatics. Overall, increased bronchoalveolar lavage eosinophils indicate ongoing airway inflammation, which may increase oxidatively modified proteins as reflected by increased protein carbonyl concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is evidence that oxidative stress plays a role in the development of chronic lung disease (CLD), with immature lungs being particularly sensitive to the injurious effect of oxygen and mechanical ventilation. We analyzed total ascorbate, urate, and protein carbonyls in 102 bronchoalveolar lavage fluid samples from 38 babies (33 preterm, 24–36 wk gestation; 5 term, 37–39 wk gestation). Preterm babies had significantly decreasing concentrations of ascorbate, urate, and protein carbonyls during the first 9 days of life (days 1–3, 4–6, and 7–9, Kruskal-Wallis ANOVA: P 5 0.016, P , 0.0001, and P 5 0.010, respectively). Preterm babies had significantly higher protein carbonyl concentrations at days 1–3 and 4–6 (P 5 0.005 and P 5 0.044) compared with term babies. Very preterm babies (24–28 wk gestation) had increased concentrations of protein carbonyls at days 4–6 (P 5 0.056) and significantly decreased ascorbate concentrations at days 4–6 (P 5 0.004) compared with preterm babies (29–36 wk gestation). Urate concentrations were significantly elevated at days 1–3 (P 5 0.023) in preterm babies who subsequently developed CLD. This study has shown the presence of oxidative stress in the lungs of preterm babies during ventilation, especially in those who subsequently developed CLD.