915 resultados para Orthogonal polynomials on the real line


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study polynomials which satisfy the same recurrence relation as the Szego{double acute} polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szego{double acute} polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szego{double acute} polynomials, para-orthogonal polynomials and associated quadrature rules are also studied. Finally, again with positive values for the reflection coefficients, interlacing properties of the Szego{double acute} polynomials and polynomials arising from canonical spectral transformations are obtained. © 2012 American Mathematical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Para-orthogonal polynomials derived from orthogonal polynomials on the unit circle are known to have all their zeros on the unit circle. In this note we study the zeros of a family of hypergeometric para-orthogonal polynomials. As tools to study these polynomials, we obtain new results which can be considered as extensions of certain classical results associated with three term recurrence relations and differential equations satisfied by orthogonal polynomials on the real line. One of these results which might be considered as an extension of the classical Sturm comparison theorem, enables us to obtain monotonicity with respect to the parameters for the zeros of these para-orthogonal polynomials. Finally, a monotonicity of the zeros of Meixner-Pollaczek polynomials is proved. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

∗ Partially supported by Grant MM-428/94 of MESC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Szego{double acute} has shown that real orthogonal polynomials on the unit circle can be mapped to orthogonal polynomials on the interval [-1,1] by the transformation 2x=z+z-1. In the 80's and 90's Delsarte and Genin showed that real orthogonal polynomials on the unit circle can be mapped to symmetric orthogonal polynomials on the interval [-1,1] using the transformation 2x=z1/2+z-1/2. We extend the results of Delsarte and Genin to all orthogonal polynomials on the unit circle. The transformation maps to functions on [-1,1] that can be seen as extensions of symmetric orthogonal polynomials on [-1,1] satisfying a three-term recurrence formula with real coefficients {cn} and {dn}, where {dn} is also a positive chain sequence. Via the results established, we obtain a characterization for a point w(|w|=1) to be a pure point of the measure involved. We also give a characterization for orthogonal polynomials on the unit circle in terms of the two sequences {cn} and {dn}. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log⁡〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N log⁡N operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider in this paper the solvability of linear integral equations on the real line, in operator form (λ−K)φ=ψ, where and K is an integral operator. We impose conditions on the kernel, k, of K which ensure that K is bounded as an operator on . Let Xa denote the weighted space as |s|→∞}. Our first result is that if, additionally, |k(s,t)|⩽κ(s−t), with and κ(s)=O(|s|−b) as |s|→∞, for some b>1, then the spectrum of K is the same on Xa as on X, for 0then establish conditions on families of operators, , which ensure that, if λ≠0 and λφ=Kkφ has only the trivial solution in X, for all k∈W, then, for 0⩽a⩽b, (λ−K)φ=ψ has exactly one solution φ∈Xa for every k∈W and ψ∈Xa. These conditions ensure further that is bounded uniformly in k∈W, for 0⩽a⩽b. As a particular application we consider the case when the kernel takes the form k(s,t)=κ(s−t)z(t), with , , and κ(s)=O(|s|−b) as |s|→∞, for some b>1. As an example where kernels of this latter form occur we discuss a boundary integral equation formulation of an impedance boundary value problem for the Helmholtz equation in a half-plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a Nystr¨om/product integration method for a class of second kind integral equations on the real line which arise in problems of two-dimensional scalar and elastic wave scattering by unbounded surfaces. Stability and convergence of the method is established with convergence rates dependent on the smoothness of components of the kernel. The method is applied to the problem of acoustic scattering by a sound soft one-dimensional surface which is the graph of a function f, and superalgebraic convergence is established in the case when f is infinitely smooth. Numerical results are presented illustrating this behavior for the case when f is periodic (the diffraction grating case). The Nystr¨om method for this problem is stable and convergent uniformly with respect to the period of the grating, in contrast to standard integral equation methods for diffraction gratings which fail at a countable set of grating periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers general second kind integral equations of the form(in operator form φ − kφ = ψ), where the functions k and ψ are assumed known, with ψ ∈ Y, the space of bounded continuous functions on R, and k such that the mapping s → k(s, · ), from R to L1(R), is bounded and continuous. The function φ ∈ Y is the solution to be determined. Conditions on a set W ⊂ BC(R, L1(R)) are obtained such that a generalised Fredholm alternative holds: If W satisfies these conditions and I − k is injective for all k ∈ W then I − k is also surjective for all k ∈ W and, moreover, the inverse operators (I − k) − 1 on Y are uniformly bounded for k ∈ W. The approximation of the kernel in the integral equation by a sequence (kn) converging in a weak sense to k is also considered and results on stability and convergence are obtained. These general theorems are used to establish results for two special classes of kernels: k(s, t) = κ(s − t)z(t) and k(s, t) = κ(s − t)λ(s − t, t), where κ ∈ L1(R), z ∈ L∞(R), and λ ∈ BC((R\{0}) × R). Kernels of both classes arise in problems of time harmonic wave scattering by unbounded surfaces. The general integral equation results are here applied to prove the existence of a solution for a boundary integral equation formulation of scattering by an infinite rough surface and to consider the stability and convergence of approximation of the rough surface problem by a sequence of diffraction grating problems of increasingly large period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper considers second kind equations of the form (abbreviated x=y + K2x) in which and the factor z is bounded but otherwise arbitrary so that equations of Wiener-Hopf type are included as a special case. Conditions on a set are obtained such that a generalized Fredholm alternative is valid: if W satisfies these conditions and I − Kz, is injective for each z ε W then I − Kz is invertible for each z ε W and the operators (I − Kz)−1 are uniformly bounded. As a special case some classical results relating to Wiener-Hopf operators are reproduced. A finite section version of the above equation (with the range of integration reduced to [−a, a]) is considered, as are projection and iterated projection methods for its solution. The operators (where denotes the finite section version of Kz) are shown uniformly bounded (in z and a) for all a sufficiently large. Uniform stability and convergence results, for the projection and iterated projection methods, are obtained. The argument generalizes an idea in collectively compact operator theory. Some new results in this theory are obtained and applied to the analysis of projection methods for the above equation when z is compactly supported and k(s − t) replaced by the general kernel k(s,t). A boundary integral equation of the above type, which models outdoor sound propagation over inhomogeneous level terrain, illustrates the application of the theoretical results developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)