972 resultados para Optic atrophy
Resumo:
Spastic paraplegia, optic atrophy, and neuropathy (SPOAN) is an autosomal recessive complicated form of hereditary spastic paraplegia, which is clinically defined by congenital optic atrophy, infancy-onset progressive spastic paraplegia and peripheral neuropathy. In this study, which included 61 individuals (age 5-72 years, 42 females) affected by SPOAN, a comprehensive motor and functional evaluation was performed, using modified Barthel index, modified Ashworth scale, hand grip strength measured with a hydraulic dynamometer and two hereditary spastic paraplegia scales. Modified Barthel index, which evaluate several functional aspects, was more sensitive to disclose disease progression than the spastic paraplegia scales. Spasticity showed a bimodal distribution, with both grades 1 (minimum) and 4 (maximum). Hand grip strength showed a moderate inverse correlation with age. Combination of early onset spastic paraplegia and progressive polyneuropathy make SPOAN disability overwhelming.
Resumo:
METHODS: We examined 20 patients from 2 unrelated Swiss families to describe their clinical phenotype. In addition, a linkage analysis was performed in an attempt to confirm the reported genetic homogeneity of this condition as well as to refine its genomic localization. RESULTS: Two point analysis provided a cumulative LOD-score of 3.03 with marker D3S 2305. The absence of recombination precluded further refinement of the disease interval. CONCLUSIONS: Our data confirm the genetic homogeneity and the extreme variability of expression, occasionally mimicking low tension glaucoma.
Resumo:
SPOAN is an autosomal recessive neurodegenerative disorder which was recently characterized by our group in a large inbred Brazilian family with 25 affected individuals. This condition is clinically defined by: 1. congenital optic atrophy; 2. progressive spastic paraplegia with onset in infancy; and 3. progressive motor and sensory axonal neuropathy. Overall, we are now aware of 68 SPOAN patients (45 females and 23 males, with age ranging from 5 to 72 years), 44 of which are presented here for the first time. They were all born in the same geographic micro region. Those 68 patients belong to 43 sibships, 40 of which exhibit parental consanguinity. Sixty-one patients were fully clinically evaluated and 64 were included in the genetic investigation. All molecularly studied patients are homozygotes for D11S1889 at 11q13. This enabled us to reduce the critical region for the SPOAN gene from 4.8 to 2.3 Mb, with a maximum two point lod score of 33.2 (with marker D11S987) and of 27.0 (with marker D11S1889). Three genes located in this newly defined critical region were sequenced, but no pathogenic mutation was detected. The gene responsible for SPOAN remains elusive.
Resumo:
The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.
Resumo:
Cardiomyopathies are severe degenerative disorders of the myocardium that lead to heart failure. During the last three decades bovine dilated cardiomyopathy (BDCMP) was observed worldwide in cattle of Holstein-Friesian origin. In the Swiss cattle population BDCMP affects Fleckvieh and Red Holstein breeds. The heart of affected animals is enlarged due to dilation of both ventricles. Clinical signs are caused by systolic dysfunction and affected individuals die as a result of severe heart insufficiency. BDCMP follows an autosomal recessive pattern of inheritance and the disease-causing locus was mapped to bovine chromosome 18 (BTA18). In the present study we describe the successful identification of the causative mutation in the OPA3 gene located on BTA18 that was previously reported to cause 3-methylglutaconic aciduria type III in Iraqi-Jewish patients. We demonstrated conclusive genetic and functional evidence that the nonsense mutation c.343C>T in the bovine OPA3 gene causes the late-onset dilated cardiomyopathy in Red Holstein cattle.
Resumo:
L’atrofia ottica dominante (ADOA) è una malattia mitocondriale caratterizzata da difetti visivi, che si manifestano durante l’infanzia, causati da progressiva degenerazione delle cellule gangliari della retina (RGC). ADOA è una malattia genetica associata, nella maggior parte dei casi, a mutazioni nel gene OPA1 che codifica per la GTPasi mitocondriale OPA1, appartenente alla famiglia delle dinamine, principalmente coinvolta nel processo di fusione mitocondriale e nel mantenimento del mtDNA. Finora sono state identificate più di 300 mutazioni patologiche nel gene OPA1. Circa il 50% di queste sono mutazioni missenso, localizzate nel dominio GTPasico, che si pensa agiscano come dominanti negative. Questa classe di mutazioni è associata ad una sindrome più grave nota come “ADOA-plus”. Nel lievito Saccharomyces cerevisiae MGM1 è l’ortologo del gene OPA1: nonostante i due geni abbiano domini funzionali identici le sequenze amminoacidiche sono scarsamente conservate. Questo costituisce una limitazione all’uso del lievito per lo studio e la validazione di mutazioni patologiche nel gene OPA1, infatti solo poche sostituzioni possono essere introdotte e studiate nelle corrispettive posizioni del gene di lievito. Per superare questo ostacolo è stato pertanto costruito un nuovo modello di S. cerevisiae, contenente il gene chimerico MGM1/OPA1, in grado di complementare i difetti OXPHOS del mutante mgm1Δ. Questo gene di fusione contiene una larga parte di sequenza corrispondente al gene OPA1, nella quale è stato inserito un set di nuove mutazioni trovate in pazienti affetti da ADOA e ADOA-plus. La patogenicità di queste mutazioni è stata validata sia caratterizzando i difetti fenotipici associati agli alleli mutati, sia la loro dominanza/recessività nel modello di lievito. A tutt’oggi non è stato identificato alcun trattamento farmacologico per la cura di ADOA e ADOA-plus. Per questa ragione abbiamo utilizzato il nostro modello di lievito per la ricerca di molecole che agiscono come soppressori chimici, ossia composti in grado di ripristinare i difetti fenotipici indotti da mutazioni nel gene OPA1. Attraverso uno screening fenotipico high throughput sono state testate due differenti librerie di composti chimici. Questo approccio, noto con il nome di drug discovery, ha permesso l’identificazione di 23 potenziali molecole attive.
Resumo:
This article considers the clinical symptoms associated with hereditary optic atrophy and reviews recent progress in our understanding the genetics of the disorder. The major genes linked to optic atrophy are identified and how defects in these genes could lead to the optic disc pathology is discussed.
Resumo:
International audience
Resumo:
Objective: To investigate clinical and MRI findings that are predictive of both visual loss in patients with pituitary adenomas and visual recovery after treatment. Design: Cohort study. Participants: Thirty patients (60 eyes) with pituitary adenoma. Methods: Patients underwent neuro-ophthalmic examination and MRI before and after optic chiasm decompression. Visual field (VF) was assessed using the mean deviation in standard automated perimetry (SAP) and temporal mean defect, the average of 22 temporal values of the total deviation plot. Tumour size was measured on sagittal and coronal cuts. Results: Visual loss was found in 47 eyes; 35 had optic atrophy (subtle in 9, moderate in 14, and severe in 12). Before treatment, the average SAP mean deviation and temporal mean defect were -11.78 (SD 8.56) dB and -18.66 (SD 11.20) dB, respectively. The chiasm was 17.3 (SD 6.2, range 10-34) mm above the reference line on the sagittal and 21.8 (SD 8.3, range 12-39) mm on the coronal images. Tumour size correlated with the severity of VF defect. VF improvement occurred in 80% of eyes after treatment. The degree of optic atrophy, visual loss, and tumour size were significantly associated with improvement after treatment. Conclusions: The best predictive factor for visual loss was tumour size, and factors related to visual recovery were the degree of optic atrophy, the severity of VF defect, and the tumour size. Diagnosing pituitary adenomas before optic atrophy becomes severe may be related to a better prognosis in such patients.
Resumo:
Optic neuritis is an occasional complication of vaccination. Visual loss can be unilateral or bilateral, and most patients recover substantially without treatment. The presumptive mechanism is an immune-mediated demyelinating injury of the optic nerve. We report two patients who had permanent visual loss following influenza vaccination. Their pattern of visual loss, segmental optic disc changes, and failure of visual recovery were atypical for demyelinating optic neuritis and reminiscent of a primary ischemic injury to the optic nerve. We speculate that an immune complex-mediated vasculopathy following vaccination can cause anterior ischemic optic neuropathy. Clinicians should be aware of this entity because of the less favorable prognosis for visual recovery in these cases.
Resumo:
To report a case of clinical and electrophysiological recovery in Leber hereditary optic neuropathy (LHON) with G3460A Mutation. A 10-year-old boy with a three-month history of painless bilateral sequential visual loss upon presentation underwent visual acuity (diminished), anterior and posterior segment examination (normal), fluorescein angiography (normal), Goldman kinetic perimetry (bilateral central scotomata), genetic (a point G3460A mutation) and electrophysiological investigation (undetectable pattern visual evoked potentials (VEP); low amplitude, broadened and reduced flash VEPs and loss of the N95 component in the pattern electroretinograms). Diagnosis of LHON was made. Eighteen months later vision and electrophysiological tests results began spontaneously improving. Kinetic perimetry revealed reduced density and size of scotomata. Two years later, there had been further electrophysiological improvement. This report describes both clinical and electrophysiological improvement in LHON with G3460A mutation.
Resumo:
We compared the pupil responses originating from outer versus inner retinal photoreception between patients with isolated hereditary optic neuropathy (HON, n = 8) and healthy controls (n = 8). Three different testing protocols were used. For the first two protocols, a response function of the maximal pupil contraction versus stimulus light intensity was generated and the intensity at which half of the maximal pupil contraction, the half-max intensity, was determined. For the third protocol, the pupil size after light offset, the re-dilation rate and re-dilation amplitude were calculated to assess the post-light stimulus response. Patients with HON had bilateral, symmetric optic atrophy and significant reduction of visual acuity and visual field compared to controls. There were no significant mean differences in the response curve and pupil response parameters that reflect mainly rod, cone or melanopsin activity between patients and controls. In patients, there was a significant correlation between the half-max intensity of the red light sequence and visual field loss. In conclusion, pupil responses derived from outer or inner retinal photoreception in HON patients having mild-to moderate visual dysfunction are not quantitatively different from age-matched controls. However, an association between the degree of visual field loss and the half-max intensity of the cone response suggests that more advanced stages of disease may lead to impaired pupil light reflexes.
Resumo:
This study examined the effect of optic nerve disease, hence retinal ganglion cell loss, on non-visual functions related to melanopsin signalling. Test subjects were patients with bilateral visual loss and optic atrophy from either hereditary optic neuropathy (n = 11) or glaucoma (n = 11). We measured melatonin suppression, subjective sleepiness and cognitive functions in response to bright light exposure in the evening. We also quantified the post-illumination pupil response to a blue light stimulus. All results were compared to age-matched controls (n = 22). Both groups of patients showed similar melatonin suppression when compared to their controls. Greater melatonin suppression was intra-individually correlated to larger post-illumination pupil response in patients and controls. Only the glaucoma patients demonstrated a relative attenuation of their pupil response. In addition, they were sleepier with slower reaction times during nocturnal light exposure. In conclusion, glaucomatous, but not hereditary, optic neuropathy is associated with reduced acute light effects. At mild to moderate stages of disease, this is detected only in the pupil function and not in responses conveyed via the retinohypothalamic tract such as melatonin suppression.