576 resultados para Operadors integrals
Resumo:
New sufficient conditions for representation of a function via the absolutely convergent Fourier integral are obtained in the paper. In the main result, Theorem 1.1, this is controlled by the behavior near infinity of both the function and its derivative. This result is extended to any dimension d &= 2.
Resumo:
In this paper we introduce new functional spaces which we call the net spaces. Using their properties, the necessary and sufficient conditions for the integral operators to be of strong or weak-type are obtained. The estimates of the norm of the convolution operator in weighted Lebesgue spaces are presented.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Motivated by the work of Mateu, Orobitg, Pérez and Verdera, who proved inequalities of the form $T_*f\lesssim M(Tf)$ or $T_*f\lesssim M^2(Tf)$ for certain singular integral operators $T$, such as the Hilbert or the Beurling transforms, we study the possibility of establishing this type of control for the Cauchy transform along a Lipschitz graph. We show that this is not possible in general, and we give a partial positive result when the graph is substituted by a Jordan curve.
Resumo:
We characterize the approach regions so that the non-tangential maximal function is of weak-type on potential spaces, for which we use a simple argument involving Carleson measure estimates.
Resumo:
Ordered weighted averaging (OWA) operators and their extensions are powerful tools used in numerous decision-making problems. This class of operator belongs to a more general family of aggregation operators, understood as discrete Choquet integrals. Aggregation operators are usually characterized by indicators. In this article four indicators usually associated with the OWA operator are extended to discrete Choquet integrals: namely, the degree of balance, the divergence, the variance indicator and Renyi entropies. All of these indicators are considered from a local and a global perspective. Linearity of indicators for linear combinations of capacities is investigated and, to illustrate the application of results, indicators of the probabilistic ordered weighted averaging -POWA- operator are derived. Finally, an example is provided to show the application to a specific context.
Resumo:
We propose quadrature rules for the approximation of line integrals possessing logarithmic singularities and show their convergence. In some instances a superconvergence rate is demonstrated.
Resumo:
The integral of the Wigner function over a subregion of the phase space of a quantum system may be less than zero or greater than one. It is shown that for systems with 1 degree of freedom, the problem of determining the best possible upper and lower bounds on such an integral, over an possible states, reduces to the problem of finding the greatest and least eigenvalues of a Hermitian operator corresponding to the subregion. The problem is solved exactly in the case of an arbitrary elliptical region. These bounds provide checks on experimentally measured quasiprobability distributions.
Resumo:
The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.
Resumo:
This note presents a method of evaluating the distribution of a path integral for Markov chains on a countable state space.
Resumo:
This paper presents a method of evaluating the expected value of a path integral for a general Markov chain on a countable state space. We illustrate the method with reference to several models, including birth-death processes and the birth, death and catastrophe process. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Invariant integrals are derived for nematic liquid crystals and applied to materials with small Ericksen number and topological defects. The nematic material is confined between two infinite plates located at y = -h and y = h (h is an element of R+) with a semi-infinite plate at y = 0 and x < 0. Planar and homeotropic strong anchoring boundary conditions to the director field are assumed at these two infinite and semi-infinite plates, respectively. Thus, a line disclination appears in the system which coincides with the z-axis. Analytical solutions to the director field in the neighbourhood of the singularity are obtained. However, these solutions depend on an arbitrary parameter. The nematic elastic force is thus evaluated from an invariant integral of the energy-momentum tensor around a closed surface which does not contain the singularity. This allows one to determine this parameter which is a function of the nematic cell thickness and the strength of the disclination. Analytical solutions are also deduced for the director field in the whole region using the conformal mapping method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper explores the calculation of fractional integrals by means of the time delay operator. The study starts by reviewing the memory properties of fractional operators and their relationship with time delay. Based on the time response of the Mittag-Leffler function an approximation of fractional integrals consisting of time delayed samples is proposed. The tuning of the approximation is optimized by means of a genetic algorithm. The results demonstrate the feasibility of the new perspective and the limits of their application.
Resumo:
Bursting Oscillation, Mixed-Mode oscillation, Slow Manifold, Quasi-Integral, slow-fast analysis, QSSA