973 resultados para OPERATING COST


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of manufacturing tolerance on direct operating cost (DOC) is extrapolated from an engine nacelle to be representative of an entire aircraft body. Initial manufacturing tolerance data was obtained from the shop floor at Bombardier Aerospace Shorts, Belfast while the corresponding costs were calculated according to various recurring elements such as basic labour and overtime labour, rework, concessions, and redeployment; along with the non-recurrent costs due to tooling and machinery, etc. The relation of tolerance to cost was modelled statistically so that the cost impact of tolerance change could be ascertained. It was shown that a relatively small relaxation in the assembly and fabrication tolerances of the wetted surfaces resulted in reduced costs of production that lowered aircraft DOC, as the incurred drag penalty was predicted and taken into account during the optimisation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ground delay programs typically involve the delaying of aircraft that are departing from origin airports within some set distance of a capacity constrained destination airport. Long haul flights are not delayed in this way. A trade-off exists when fixing the distance parameter: increasing the ‘scope’ distributes delay among more aircraft and may reduce airborne holding delay but could also result in unnecessary delay in the (frequently observed) case of early program cancellation. In order to overcome part of this drawback, a fuel based cruise speed reduction strategy aimed at realizing airborne delay, was suggested by the authors in previous publications. By flying slower, at a specific speed, aircraft that are airborne can recover part of their initially assigned delay without incurring extra fuel consumption if the ground delay program is canceled before planned. In this paper, the effect of the scope of the program is assessed when applying this strategy. A case study is presented by analyzing all the ground delay programs that took place at San Francisco, Newark Liberty and Chicago O’Hare International airports during one year. Results show that by the introduction of this technique it is possible to define larger scopes, partially reducing the amount of unrecovered delay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En route speed reduction can be used for air traffic flow management (ATFM), e.g., delaying aircraft while airborne or realizing metering at an arrival fix. In previous publications, the authors identified the flight conditions that maximize the airborne delay without incurring extra fuel consumption with respect to the nominal (not delayed) flight. In this paper, the effect of wind on this strategy is studied, and the sensitivity to wind forecast errors is also assessed. A case study done in Chicago O’Hare airport (ORD) is presented, showing that wind has a significant effect on the airborne delay that can be realized and that, in some cases, even tailwinds might lead to an increase in the maximum amount of airborne delay. The values of airborne delay are representative enough to suggest that this speed reduction technique might be useful in a real operational scenario. Moreover, the speed reduction strategy is more robust than nominal operations against fuel consumption in the presence of wind forecast uncertainties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cost of electricity, a major operating cost of municipal wastewater treatment plants, is related to influent flow rate, power price, and power load. With knowledge of inflow and price patterns, plant operators can manage processes to reduce electricity costs. Records of influent flow, power price, and load are evaluated for Blue Plains Advanced Wastewater Treatment Plant. Diurnal and seasonal trends are analyzed. Power usage is broken down among treatment processes. A simulation model of influent pumping, a large power user, is developed. It predicts pump discharge and power usage based on wet-well level. Individual pump characteristics are tested in the plant. The model accurately simulates plant inflow and power use for two pumping stations [R2 = 0.68, 0.93 (inflow), R2 =0.94, 0.91(power)]. Wet-well stage-storage relationship is estimated from data. Time-varying wet-well level is added to the model. A synthetic example demonstrates application in managing pumps to reduce electricity cost.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The need to integrate cost into the early product definition process as an engineering parameter is addressed. The application studied is a fuselage panel that is typical for commercial transport regional jets. Consequently, a semi-empirical numerical analysis using reference data was coupled to model the structural integrity of thin-walled structures with regard to material failure and buckling: skin, stringer, flexural, and interrivet. The optimization process focuses on direct operating cost (DOC) as a function of acquisition cost and fuel burn. It was found that the ratio of acquisition cost to fuel burn was typically 4:3 and that there was a 10% improvement in the DOC for the minimal DOC condition over the minimal weight condition because of the manufacturing cost saving from having a reduced number of larger-area stringers and a slightly thicker skin than that preferred by the minimal weight condition. Also note that the minimal manufacturing cost condition was slightly better than the minimal weight condition, which highlights the key finding: The traditional minimal weight condition is a dated and suboptimal approach to airframe structural design.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A methodology to estimate the cost implications of design decisions by integrating cost as a design parameter at an early design stage is presented. The model is developed on a hierarchical basis, the manufacturing cost of aircraft fuselage panels being analysed in this paper. The manufacturing cost modelling is original and relies on a genetic-causal method where the drivers of each element of cost are identified relative to the process capability. The cost model is then extended to life cycle costing by computing the Direct Operating Cost as a function of acquisition cost and fuel burn, and coupled with a semi-empirical numerical analysis using Engineering Sciences Data Unit reference data to model the structural integrity of the fuselage shell with regard to material failure and various modes of buckling. The main finding of the paper is that the traditional minimum weight condition is a dated and sub-optimal approach to airframe structural design.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The paper focuses on the development of an aircraft design optimization methodology that models uncertainty and sensitivity analysis in the tradeoff between manufacturing cost, structural requirements, andaircraft direct operating cost.Specifically,ratherthanonlylooking atmanufacturingcost, direct operatingcost is also consideredintermsof the impact of weight on fuel burn, in addition to the acquisition cost to be borne by the operator. Ultimately, there is a tradeoff between driving design according to minimal weight and driving it according to reduced manufacturing cost. Theanalysis of cost is facilitated withagenetic-causal cost-modeling methodology,andthe structural analysis is driven by numerical expressions of appropriate failure modes that use ESDU International reference data. However, a key contribution of the paper is to investigate the modeling of uncertainty and to perform a sensitivity analysis to investigate the robustness of the optimization methodology. Stochastic distributions are used to characterize manufacturing cost distributions, andMonteCarlo analysis is performed in modeling the impact of uncertainty on the cost modeling. The results are then used in a sensitivity analysis that incorporates the optimization methodology. In addition to investigating manufacturing cost variance, the sensitivity of the optimization to fuel burn cost and structural loading are also investigated. It is found that the consideration of manufacturing cost does make an impact and results in a different optimal design configuration from that delivered by the minimal-weight method. However, it was shown that at lower applied loads there is a threshold fuel burn cost at which the optimization process needs to reduce weight, and this threshold decreases with increasing load. The new optimal solution results in lower direct operating cost with a predicted savings of 640=m2 of fuselage skin over the life, relating to a rough order-of-magnitude direct operating cost savings of $500,000 for the fuselage alone of a small regional jet. Moreover, it was found through the uncertainty analysis that the principle was not sensitive to cost variance, although the margins do change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper considers the congestion effects on emission and consumers' allocated cost. In order to consider some environmental and operational effects of congestion, an environmental constrained active-reactive optimal power flow (AROPF) considering capability curve is presented. On outage conditions, the total cost of the system will increase. On the other hand in power systems, the operating cost and system emission have conflicted objectives, then it may be concluded that the outage in the system may lead to a total emission decrease. In this paper the famous Aumann-Shapley method is used as a pricing methodology. Two case studies such as 14-bus and US-bus IEEE test systems are conducted. Results demonstrate that, although the line outage in power systems leads to increase the total cost, the amount of emission depending on the place where the outage occurs can be more than, less than or equal to the normal conditions' emission. Also results show that although from power sellers' standpoint the well-known Aumann-Shapley method is a precise pricing method to cover the incurred cost with an acceptable error that can show the real effect of congestion on consumers' cost, from consumers' standpoint it is not a good method for cost allocation, because some consumers will face with an increase in cost and the others will face with a decrease on their cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Red light cameras (RLCs) have been used in a number of US cities to yield a demonstrable reduction in red light violations; however, evaluating their impact on safety (crashes) has been relatively more difficult. Accurately estimating the safety impacts of RLCs is challenging for several reasons. First, many safety related factors are uncontrolled and/or confounded during the periods of observation. Second, “spillover” effects caused by drivers reacting to non-RLC equipped intersections and approaches can make the selection of comparison sites difficult. Third, sites selected for RLC installation may not be selected randomly, and as a result may suffer from the regression to the mean bias. Finally, crash severity and resulting costs need to be considered in order to fully understand the safety impacts of RLCs. Recognizing these challenges, a study was conducted to estimate the safety impacts of RLCs on traffic crashes at signalized intersections in the cities of Phoenix and Scottsdale, Arizona. Twenty-four RLC equipped intersections in both cities are examined in detail and conclusions are drawn. Four different evaluation methodologies were employed to cope with the technical challenges described in this paper and to assess the sensitivity of results based on analytical assumptions. The evaluation results indicated that both Phoenix and Scottsdale are operating cost-effective installations of RLCs: however, the variability in RLC effectiveness within jurisdictions is larger in Phoenix. Consistent with findings in other regions, angle and left-turn crashes are reduced in general, while rear-end crashes tend to increase as a result of RLCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An energy storage system (ESS) can provide ancillary services such as frequency regulation and reserves, as well as smooth the fluctuations of wind power outputs, and hence improve the security and economics of the power system concerned. The combined operation of a wind farm and an ESS has become a widely accepted operating mode. Hence, it appears necessary to consider this operating mode in transmission system expansion planning, and this is an issue to be systematically addressed in this work. Firstly, the relationship between the cost of the NaS based ESS and its discharging cycle life is analyzed. A strategy for the combined operation of a wind farm and an ESS is next presented, so as to have a good compromise between the operating cost of the ESS and the smoothing effect of the fluctuation of wind power outputs. Then, a transmission system expansion planning model is developed with the sum of the transmission investment costs, the investment and operating costs of ESSs and the punishment cost of lost wind energy as the objective function to be minimized. An improved particle swarm optimization algorithm is employed to solve the developed planning model. Finally, the essential features of the developed model and adopted algorithm are demonstrated by 18-bus and 46-bus test systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mining industry faces concurrent pressures of reducing water use, energy consumption and greenhouse gas (GHG) emissions in coming years. However, the interactions between water and energy use, as well as GHG e missions have largely been neglected in modelling studies to date. In addition, investigations tend to focus on the unit operation scale, with little consideration of whole-of-site or regional scale effects. This paper presents an application of a hierarchical systems model (HSM) developed to represent water, energy and GHG emissions fluxes at scales ranging from the unit operation, to the site level, to the regional level. The model allows for the linkages between water use, energy use and GHG emissions to be examined in a fl exible and intuitive way, so that mine sites can predict energy and emissions impacts of water use reduction schemes and vice versa. This paper examines whether this approach can also be applied to the regional scale with multiple mine sites. The model is used to conduct a case study of several coal mines in the Bowen Basin, Australia, to compare the utility of centralised and decentralised mine water treatment schemes. The case study takes into account geographical factors (such as water pumping distances and elevations), economic factors (such as capital and operating cost curves for desalination treatment plants) and regional factors (such as regionally varying climates and associated variance in mine water volumes and quality). The case study results indicate that treatment of saline mine water incurs a trade-off between water and energy use in all cases. However, significant cost differences between centralised and decentralised schemes can be observed in a simple economic analysis. Further research will examine the possibility for deriving model up-scaling algorithms to reduce computational requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Converting from an existing irrigation system is often seen as high risk by the land owner. The significant financial investment and the long period over which the investment runs is also complicated by the uncertainty associated with long term input costs (such as energy), crop production, and the continually evolving natural resource management rules and policy. Irrigation plays a pivotal part in the Burdekin sugarcane farming system. At present the use of furrow irrigation is by far the most common form due to the ease of use, relatively low operating cost and well established infrastructure currently in place. The Mulgrave Area Farmer Integrated Action (MAFIA) grower group, located near Clare in the lower Burdekin region, identified the need to learn about sustainable farming systems with a focus on the environment, social and economic implications. In early 2007, Hesp Faming established a site to investigate the use of overhead irrigation as an alternative to furrow irrigation and its integration with new farming system practices, including Green Cane Trash Blanketing (GCTB). Although significant environmental and social benefits exist, the preliminary investment analysis indicates that the Overhead Low Pressure (OHLP) irrigation system is not adding financial value to the Hesp Farming business. A combination of high capital costs and other offsetting factors resulted in the benefits not being fully realised. A different outcome is achieved if Hesp Farming is able to realise value on the water saved, with both OHLP irrigation systems displaying a positive NPV. This case study provides a framework to further investigate the economics of OHLP irrigation in sugarcane and it is anticipated that with additional data a more definitive outcome will be developed in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discharge plasma-chemical hybrid process for NOinfinity removal from the flue gas emissions is an extremely effective and economical approach in comparison with the conventional selective catalytic reduction system. In this paper we bring out a relative comparison of several discharge plasma reactors from the point of NO removal efficiency. The reactors were either energized by ac or by repetitive pulses. Ferroelectric pellets were used to study the effect of pellet assisted discharges on gas cleaning. Diesel engine exhaust, at different loads; is used to approximately simulate the flue gas composition. Investigations were carried out at room temperature with respect to the variation of reaction products against the discharge power. Main emphasis is laid on the oxidation of NO to NO2, without reducing NOx concentration (i.e., minimum reaction byproducts), with least power consumption. The produced NO2 will be totally converted to N-2 and Na-2 SO4 using Na-2 SO3. The ac packed-bed reactor and pelletless pulsed corona reactor showed better performance, with minimum reaction products for a given power, when the NO concentration was low (similar to 100 ppm). When the engine load exceeds 50% (NO > 300 ppm) there was not much decrease in NO reduction and more or less all the reactors performed equally. The total operating cost of the plasma-chemical hybrid system becomes $4010/ton of NO, which is 1/3-1/5 of the conventional selective catalytic process.