941 resultados para Normal operating conditions
Resumo:
Differentiated dendritic cells (DC) have been identified by the presence of nuclear RelB (nRelB) and HLA-DR, and the absence of CD20 or high levels of CD68, in lymph nodes and active rheumatoid arthritis synovial tissue. The current studies aimed to identify conditions in which nRelB is expressed in human tissues, by single and double immunohistochemistry of formalin-fixed peripheral and lymphoid tissue. Normal peripheral tissue did not contain nRelB(+) cells. nRelB(+) DC were located only in T- or B-cell areas of lymphoid tissue associated with normal organs or peripheral tissues, including tonsil, colon, spleen and thymus, or in association with T cells in inflamed peripheral tissue. Inflamed sites included skin delayed-type hypersensitivity reaction, and a wide range of tissues affected by autoimmune disease. Nuclear RelB(+) -HLA-DR- follicular DC were located in B-cell follicles in lymphoid organs and in lymphoid-like follicles of some tissues affected by autoimmune disease. Lymphoid tissue T-cell areas also contained nRelB(-) -HLA-DR+ cells, some of which expressed CD123 and/or CD68. Nuclear RelB(+) cells are found in normal lymphoid organs and in peripheral tissue in the context of inflammation, but not under normal resting conditions.
Resumo:
Several possible methods of increasing the efficiency and power of hydro power plants by improving the flow passages are investigated in this stydy. The theoretical background of diffuser design and its application to the optimisation of hydraulic turbine draft tubes is presented in the first part of this study. Several draft tube modernisation projects that have been carried out recently are discussed. Also, a method of increasing the efficiency of the draft tube by injecting a high velocity jet into the boundary layer is presented. Methods of increasing the head of a hydro power plant by using an ejector or a jet pump are discussed in the second part of this work. The theoretical principles of various ejector and jet pump types are presented and four different methods of calculating them are examined in more detail. A self-made computer code is used to calculate the gain in the head for two example power plants. Suitable ejector installations for the example plants are also discussed. The efficiency of the ejector power was found to be in the range 6 - 15 % for conventional head increasers, and 30 % for the jet pump at its optimum operating point. In practice, it is impossible to install an optimised jet pump with a 30 % efficiency into the draft tube as this would considerabely reduce the efficiency of the draft tube at normal operating conditions. This demonstrates, however, the potential for improvement which lies in conventional head increaser technology. This study is based on previous publications and on published test results. No actual laboratory measurements were made for this study. Certain aspects of modelling the flow in the draft tube using computational fluid dynamics are discussed in the final part of this work. The draft tube inlet velocity field is a vital boundary condition for such a calculation. Several previously measured velocity fields that have successfully been utilised in such flow calculations are presented herein.
Resumo:
Drying is a major step in the manufacturing process in pharmaceutical industries, and the selection of dryer and operating conditions are sometimes a bottleneck. In spite of difficulties, the bottlenecks are taken care of with utmost care due to good manufacturing practices (GMP) and industries' image in the global market. The purpose of this work is to research the use of existing knowledge for the selection of dryer and its operating conditions for drying of pharmaceutical materials with the help of methods like case-based reasoning and decision trees to reduce time and expenditure for research. The work consisted of two major parts as follows: Literature survey on the theories of spray dying, case-based reasoning and decision trees; working part includes data acquisition and testing of the models based on existing and upgraded data. Testing resulted in a combination of two models, case-based reasoning and decision trees, leading to more specific results when compared to conventional methods.
Resumo:
Spray drying is an important method used by the food industry in the production of microencapsulated flavors to improve handling and dispersion properties. The objective of this study was to evaluate the influence of the process conditions on the properties of rosemary essential oil microencapsulated by spray drying using gum Arabic as encapsulant. The effects of the wall material concentration (10-30%), inlet air temperature (135-195 ºC), and feed flow rate (0.5-1.0 L.h-1) on the moisture content, hygroscopicity, wettability, solubility, bulk and tapped densities, particle density, flowability, and cohesiveness were evaluated using a 2³ central composite rotational experimental design. Moisture content, hygroscopicity and wettability were significantly affected by the three factors analyzed. Bulk density was positively influenced by the wall material concentration and negatively by the inlet air temperature. Particle density was influenced by the wall material concentration and the inlet air temperature variables, both in a negative manner. As for the solubility, tapped density, flowability, and cohesiveness, the models did not fit the data well. The results indicated that moderate wall material concentration (24%), low inlet air temperature (135 ºC), and moderate feed flow rate (0.7 L.h-1) are the best spray drying conditions.
Resumo:
A fundamental combustion model for spark-ignition engine is studied in this report. The model is implemented in SIMULINK to simulate engine outputs (mass fraction burn and in-cylinder pressure) under various engine operation conditions. The combustion model includes a turbulent propagation and eddy burning processes based on literature [1]. The turbulence propagation and eddy burning processes are simulated by zero-dimensional method and the flame is assumed as sphere. To predict pressure, temperature and other in-cylinder variables, a two-zone thermodynamic model is used. The predicted results of this model match well with the engine test data under various engine speeds, loads, spark ignition timings and air fuel mass ratios. The developed model is used to study cyclic variation and combustion stability at lean (or diluted) combustion conditions. Several variation sources are introduced into the combustion model to simulate engine performance observed in experimental data. The relations between combustion stability and the introduced variation amount are analyzed at various lean combustion levels.
Resumo:
Gasification is a technology that can replace traditional management alternatives used up to date to deal with this waste (landfilling, composting and incineration) and which fulfils the social, environmental and legislative requirements. The main products of sewage sludge gasification are permanent gases (useful to generate energy or to be used as raw material in chemical synthesis processes), liquids (tars) and char. One of the main problems to be solved in gasification is tar production. Tars are organic impurities which can condense at relatively high temperatures making impossible to use the produced gases for most applications. This work deals with the effect of some primary tar removal processes (performed inside the gasifier) on sewage sludge gasification products. For this purpose, analysis of the gas composition, tar production, cold gas efficiency and carbon conversion were carried out. The tests were performed with air in a laboratory scale plant consisting mainly of a bubbling bed gasifier. No catalyzed and catalyzed (10% wt of dolomite in the bed and in the feeding) tests were carried out at different temperatures (750ºC, 800ºC and 850ºC) in order to know the effect of these parameters in the gasification products. As far as tars were concerned, qualitative and quantitative tar composition was determined. In all tests the Equivalence Ratio (ER) was kept at 0.3. Temperature is one of the most influential variables in sewage sludge gasification. Higher temperatures favoured hydrogen and CO production while CO2 content decreased, which might be partially explained by the effect of the cracking, Boudouard and CO2 reforming reactions. At 850ºC, cold gas efficiency and carbon conversion reached 49% and 76%, respectively. The presence of dolomite as catalyst increased the production of H2 reaching contents of 15.5% by volume at 850 °C. Similar behaviour was found for CO whereas CO2 and CnHm (light hydrocarbons) production decreased. In the presence of dolomite, a tar reduction of up to 51% was reached in comparison with no catalyzed tests, as well as improvements on cold gas efficiency and carbon conversion. Several assays were developed in order to test catalyst performance under more rough gasification conditions. For this purpose, the throughput value (TR), defined as kg sludge “as received” fed to the gasifier per hour and per m2 of cross sectional area of the gasifier, was modified. Specifically, the TR values used were 110 (reference value), 215 and 322 kg/h·m2. When TR increased, the H2, CO and CH4 production decreased while the CO2 and the CnHm production increased. Tar production increased drastically with TR during no catalysed tests what is related to the lower residence time of the gas inside the reactor. Nevertheless, even at TR=322 kg/h·m2, tar production decreased by nearly 50% with in-bed use of dolomite in comparison with no catalyzed assays under the same operating conditions. Regarding relative tar composition, there was an increase in benzene and naphthalene content when temperature increased while the content of the rest of compounds decreased. The dolomite seemed to be effective all over the range of molecular weight studied showing tar removal efficiencies between 35-55% in most cases. High values of the TR caused a significant increase in tar production but a slight effect on tar composition.
Resumo:
Polysilicon cost impacts significantly on the photovoltaics (PV) cost and on the energy payback time. Nowadays, the besetting production process is the so called Siemens process, polysilicon deposition by chemical vapor deposition (CVD) from Trichlorosilane. Polysilicon purification level for PV is to a certain extent less demanding that for microelectronics. At the Instituto de Energía Solar (IES) research on this subject is performed through a Siemens process-type laboratory reactor. Through the laboratory CVD prototype at the IES laboratories, valuable information about the phenomena involved in the polysilicon deposition process and the operating conditions is obtained. Polysilicon deposition by CVD is a complex process due to the big number of parameters involved. A study on the influence of temperature and inlet gas mixture composition on the polysilicon deposition growth rate, based on experimental experience, is shown. Moreover, CVD process accounts for the largest contribution to the energy consumption of the polysilicon production. In addition, radiation phenomenon is the major responsible for low energetic efficiency of the whole process. This work presents a model of radiation heat loss, and the theoretical calculations are confirmed experimentally through a prototype reactor at our disposal, yielding a valuable know-how for energy consumption reduction at industrial Siemens reactors.
Resumo:
Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101–107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14–46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π–π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
The predictions of nonequilibrium radiation in the shock layer for a Titan aerocapture aeroshell vary significantly amongst Computational Fluid Dynamics (CFD) analyses and are limited by the physical models of the nonequilibrium flow processes. Of particular interest are nonequilibrium processes associated with the CN molecule which is a strong radiator. It is necessary to have experimental data for these radiating shock layers which will allow for validation of the CFD models. This paper describes the development of a test flow condition for subscale aeroshell models in a superorbital expansion tunnel. We discuss the need for a Titan gas condition that closely simulates the atmospheric composition and present experimental data of the free stream test flow conditions. Furthermore, we present finite-rate CFD calculations of the facility to estimate the remaining free stream conditions, which cannot be directly measured during experiments.