1000 resultados para Nodal solutions
Resumo:
Finite element method (FEM) relies on an approximate function to fit into a governing equation and minimizes the residual error in the integral sense in order to generate solutions for the boundary value problems (nodal solutions). Because of this FEM does not show simultaneous capacities for accurate displacement and force solutions at node and along an element, especially when under the element loads, which is of much ubiquity. If the displacement and force solutions are strictly confined to an element’s or member’s ends (nodal response), the structural safety along an element (member) is inevitably ignored, which can definitely hinder the design of a structure for both serviceability and ultimate limit states. Although the continuous element deflection and force solutions can be transformed into the discrete nodal solutions by mesh refinement of an element (member), this setback can also hinder the effective and efficient structural assessment as well as the whole-domain accuracy for structural safety of a structure. To this end, this paper presents an effective, robust, applicable and innovative approach to generate accurate nodal and element solutions in both fields of displacement and force, in which the salient and unique features embodies its versatility in applications for the structures to account for the accurate linear and second-order elastic displacement and force solutions along an element continuously as well as at its nodes. The significance of this paper is on shifting the nodal responses (robust global system analysis) into both nodal and element responses (sophisticated element formulation).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some superlinear fourth order elliptic equations are considered. A family of solutions is proved to exist and to concentrate at a point in the limit. The proof relies on variational methods and makes use of a weak version of the Ambrosetti-Rabinowitz condition. The existence and concentration of solutions are related to a suitable truncated equation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
El hormigón estructural sigue siendo sin duda uno de los materiales más utilizados en construcción debido a su resistencia, rigidez y flexibilidad para diseñar estructuras. El cálculo de estructuras de hormigón, utilizando vigas y vigas-columna, es complejo debido a los fenómenos de acoplamiento entre esfuerzos y al comportamiento no lineal del material. Los modelos más empleados para su análisis son el de Bernoulli-Euler y el de Timoshenko, indicándose en la literatura la conveniencia de usar el segundo cuando la relación canto/luz no es pequeña o los elementos están fuertemente armados. El objetivo fundamental de esta tesis es el análisis de elementos viga y viga-columna en régimen no lineal con deformación por cortante, aplicando el concepto de Pieza Lineal Equivalente (PLE). Concepto éste que consiste básicamente en resolver el problema de una pieza en régimen no lineal, transformándolo en uno lineal equivalente, de modo que ambas piezas tengan la misma deformada y los mismos esfuerzos. Para ello, se hizo en primer lugar un estudio comparado de: las distintas propuestas que aplican la deformación por cortante, de los distintos modelos constitutivos y seccionales del hormigón estructural y de los métodos de cálculo no lineal aplicando el método de elementos finitos (MEF). Teniendo en cuenta que la resolución del problema no lineal se basa en la resolución de sucesivos problemas lineales empleando un proceso de homotopía, los problemas lineales de la viga y viga-columna de Timoshenko, se resuelven mediante MEF, utilizando soluciones nodalmente exactas (SNE) y acción repartida equivalente de cualquier orden. Se obtiene así, con muy pocos elementos finitos, una excelente aproximación de la solución, no sólo en los nodos sino en el interior de los elementos. Se introduce el concepto PLE para el análisis de una barra, de material no lineal, sometida a acciones axiales, y se extiende el mismo para el análisis no lineal de vigas y vigas-columna con deformación por cortante. Cabe señalar que para estos últimos, la solución de una pieza en régimen no lineal es igual a la de una en régimen lineal, cuyas rigideces son constantes a trozos, y donde además hay que añadir momentos y cargas puntuales ficticias en los nodos, así como, un momento distribuido ficticio en toda la pieza. Se han desarrollado dos métodos para el análisis: uno para problemas isostáticos y otro general, aplicable tanto a problemas isostáticos como hiperestáticos. El primero determina de entrada la PLE, realizándose a continuación el cálculo por MEF-SNE de dicha pieza, que ahora está en régimen lineal. El general utiliza una homotopía que transforma de manera iterativa, unas leyes constitutivas lineales en las leyes no lineales del material. Cuando se combina con el MEF, la pieza lineal equivalente y la solución del problema original quedan determinadas al final de todo el proceso. Si bien el método general es un procedimiento próximo al de Newton- Raphson, presenta sobre éste la ventaja de permitir visualizar las deformaciones de la pieza en régimen no lineal, de manera tanto cualitativa como cuantitativa, ya que es posible observar en cada paso del proceso la modificación de rigideces (a flexión y cortante) y asimismo la evolución de las acciones ficticias. Por otra parte, los resultados obtenidos comparados con los publicados en la literatura, indican que el concepto PLE ofrece una forma directa y eficiente para analizar con muy buena precisión los problemas asociados a vigas y vigas-columna en las que por su tipología los efectos del cortante no pueden ser despreciados. ABSTRACT The structural concrete clearly remains the most used material in construction due to its strength, rigidity and structural design flexibility. The calculation of concrete structures using beams and beam-column is complex as consequence of the coupling phenomena between stresses and of its nonlinear behaviour. The models most commonly used for analysis are the Bernoulli-Euler and Timoshenko. The second model is strongly recommended when the relationship thickness/span is not small or in case the elements are heavily reinforced. The main objective of this thesis is to analyse the beam and beam-column elements with shear deformation in nonlinear regime, applying the concept of Equivalent Linear Structural Element (ELSE). This concept is basically to solve the problem of a structural element in nonlinear regime, transforming it into an equivalent linear structural element, so that both elements have the same deformations and the same stresses. Firstly, a comparative study of the various proposals of applying shear deformation, of various constitutive and sectional models of structural concrete, and of the nonlinear calculation methods (using finite element methods) was carried out. Considering that the resolution of nonlinear problem is based on solving the successive linear problem, using homotopy process, the linear problem of Timoshenko beam and beam-columns is resolved by FEM, using the exact nodal solutions (ENS) and equivalent distributed load of any order. Thus, the accurate solution approximation can be obtained with very few finite elements for not only nodes, but also for inside of elements. The concept ELSE is introduced to analyse a bar of nonlinear material, subjected to axial forces. The same bar is then used for other nonlinear beam and beam-column analysis with shear deformation. It is noted that, for the last analyses, the solution of a structural element in nonlinear regime is equal to that of linear regime, in which the piecewise-stiffness is constant, the moments and fictitious point loads need to be added at nodes of each element, as well as the fictitious distributed moment on element. Two methods have been developed for analysis: one for isostatic problem and other more general, applicable for both isostatic and hiperstatic problem. The first method determines the ELSE, and then the calculation of this piece is performed by FEM-ENS that now is in linear regime. The general method uses the homotopy that transforms iteratively linear constitutive laws into nonlinear laws of material. When combined with FEM, the ELSE and the solution of the original problem are determined at the end of the whole process. The general method is well known as a procedure closed to Newton-Raphson procedure but presents an advantage that allows displaying deformations of the piece in nonlinear regime, in both qualitative and quantitative way. Since it is possible to observe the modification of stiffness (flexural and shear) in each step of process and also the evolution of the fictitious actions. Moreover, the results compared with those published in the literature indicate that the ELSE concept offers a direct and efficient way to analyze with very good accuracy the problems associated with beams and beams columns in which, by typology, the effects of shear cannot be neglected.
Resumo:
We consider the boundary value problems for nonlinear second-order differential equations of the form u '' + a(t)f (u) = 0, 0 < t < 1, u(0) = u (1) = 0. We give conditions on the ratio f (s)/s at infinity and zero that guarantee the existence of solutions with prescribed nodal properties. Then we establish existence and multiplicity results for nodal solutions to the problem. The proofs of our main results are based upon bifurcation techniques. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We consider boundary value problems for nonlinear second order differential equations of the form u + a(t) f(u) = 0, t epsilon (0, 1), u(0) = u(1) = 0, where a epsilon C([0, 1], (0, infinity)) and f : R --> R is continuous and satisfies f (s)s > 0 for s not equal 0. We establish existence and multiplicity results for nodal solutions to the problems if either f(0) = 0, f(infinity) = infinity or f(0) = infinity, f(0) = 0, where f (s)/s approaches f(0) and f(infinity) as s approaches 0 and infinity, respectively. We use bifurcation techniques to prove our main results. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We consider a parametric nonlinear Neumann problem driven by a nonlinear nonhomogeneous differential operator and with a Caratheodory reaction $f\left( t,x\right) $ which is $p-$superlinear in $x$ without satisfying the usual in such cases Ambrosetti-Rabinowitz condition. We prove a bifurcation type result describing the dependence of the positive solutions on the parameter $\lambda>0,$ we show the existence of a smallest positive solution $\overline{u}_{\lambda}$ and investigate the properties of the map $\lambda\rightarrow\overline{u}_{\lambda}.$ Finally we also show the existence of nodal solutions.
Resumo:
The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.
Resumo:
In this paper, the free vibration of a rotating Euler-Bernoulli beam is studied using an inverse problem approach. We assume a polynomial mode shape function for a particular mode, which satisfies all the four boundary conditions of a rotating beam, along with the internal nodes. Using this assumed mode shape function, we determine the linear mass and fifth order stiffness variations of the beam which are typical of helicopter blades. Thus, it is found that an infinite number of such beams exist whose fourth order governing differential equation possess a closed form solution for certain polynomial variations of the mass and stiffness, for both cantilever and pinned-free boundary conditions corresponding to hingeless and articulated rotors, respectively. A detailed study is conducted for the first, second and third modes of a rotating cantilever beam and the first and second elastic modes of a rotating pinned-free beam, and on how to pre-select the internal nodes such that the closed-form solutions exist for these cases. The derived results can be used as benchmark solutions for the validation of rotating beam numerical methods and may also guide nodal tailoring. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
High conversion LWRs concepts typically rely on a heterogeneous core configuration, where fissile zones are interspersed with fertile blanket zones in order to achieve a high conversion ratio. Modeling such a heterogeneous structure of these cores represents a significant challenge to the conventional reactor analysis methods. It was recently suggested to overcome such difficulties, in particular, for the case of axially heterogeneous reduced moderation BWRs, by introducing an additional set of discontinuity factors in axial direction at the interfaces between fissile and fertile fuel assembly zones. However, none of the existing nodal diffusion core simulators have the capability of accounting for discontinuity of homogeneous nodal fluxes in axial direction since the fuel composition of conventional LWRs is much more axially uniform. In this work, we modified the nodal diffusion code DYN3D by introducing such a capability. The new version of the code was tested on a series of reduced moderation BWR cases with Th-U233 and U-Pu-MA fuel. The library of few-group homogenized cross sections and the data required for the calculation of discontinuity factors were generated using the Monte Carlo transport code Serpent. The results obtained with the modified version of DYN3D were compared with the reference Monte Carlo solutions and were found to be in good agreement. The current analysis demonstrates that high conversion LWRs can in principle be modeled using existing nodal diffusion core simulators. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Die vorliegende Arbeit befaßt sich mit einer Klasse von nichtlinearen Eigenwertproblemen mit Variationsstrukturin einem reellen Hilbertraum. Die betrachteteEigenwertgleichung ergibt sich demnach als Euler-Lagrange-Gleichung eines stetig differenzierbarenFunktionals, zusätzlich sei der nichtlineare Anteil desProblems als ungerade und definit vorausgesetzt.Die wichtigsten Ergebnisse in diesem abstrakten Rahmen sindKriterien für die Existenz spektral charakterisierterLösungen, d.h. von Lösungen, deren Eigenwert gerade miteinem vorgegeben variationellen Eigenwert eines zugehörigen linearen Problems übereinstimmt. Die Herleitung dieserKriterien basiert auf einer Untersuchung kontinuierlicher Familien selbstadjungierterEigenwertprobleme und erfordert Verallgemeinerungenspektraltheoretischer Konzepte.Neben reinen Existenzsätzen werden auch Beziehungen zwischenspektralen Charakterisierungen und denLjusternik-Schnirelman-Niveaus des Funktionals erörtert.Wir betrachten Anwendungen auf semilineareDifferentialgleichungen (sowieIntegro-Differentialgleichungen) zweiter Ordnung. Diesliefert neue Informationen über die zugehörigenLösungsmengen im Hinblick auf Knoteneigenschaften. Diehergeleiteten Methoden eignen sich besonders für eindimensionale und radialsymmetrische Probleme, während einTeil der Resultate auch ohne Symmetrieforderungen gültigist.