Nonlinear, nonhomogeneous parametric Neumann problems
| Data(s) |
18/10/2016
18/10/2016
01/09/2016
|
|---|---|
| Resumo |
We consider a parametric nonlinear Neumann problem driven by a nonlinear nonhomogeneous differential operator and with a Caratheodory reaction $f\left( t,x\right) $ which is $p-$superlinear in $x$ without satisfying the usual in such cases Ambrosetti-Rabinowitz condition. We prove a bifurcation type result describing the dependence of the positive solutions on the parameter $\lambda>0,$ we show the existence of a smallest positive solution $\overline{u}_{\lambda}$ and investigate the properties of the map $\lambda\rightarrow\overline{u}_{\lambda}.$ Finally we also show the existence of nodal solutions. |
| Identificador |
1230-3429 |
| Idioma(s) |
eng |
| Publicador |
Juliusz Schauder University Centre for Nonlinear Studies; Nicolaus Copernicus University in Toruń |
| Relação |
PEst-OE/MAT/UI4106/2014 SFRH/BSAB/113647/2015 http://dx.doi.org/10.12775/TMNA.2016.035 |
| Direitos |
openAccess |
| Palavras-Chave | #Positive solutions #Nonlinear nonhomogeneous differential operator #Nonlinear regularity #Nonlinear maximum principle #Bifurcation type result #Nodal solutions |
| Tipo |
article |