859 resultados para Nitrification Inhibitors
Resumo:
The use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted recently as an effective method to reduce nitrous oxide (N2O) emissions from fertilised agricultural fields, whilst increasing yield and nitrogen use efficiency. Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser and consequently elevated emissions of nitrous oxide (N2O) can be expected. However, to date only limited data is available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment investigated the effect of the nitrification inhibitors (DMPP & 3MP+TZ) on N2O emissions and yield from a typical vegetable production system in sub-tropical Australia. Soil N2O fluxes were monitored continuously over an entire year with a fully automated system. Measurements were taken from three subplots for each treatment within a randomized complete blocks design. There was a significant inhibition effect of DMPP and 3MP+TZ on N2O emissions and soil mineral N content directly following the application of the fertiliser over the vegetable cropping phase. However this mitigation was offset by elevated N2O emissions from the inhibitor treatments over the post-harvest fallow period. Cumulative annual N2O emissions amounted to 1.22 kg-N/ha, 1.16 kg-N/ha, 1.50 kg-N/ha and 0.86 kg-N/ha in the conventional fertiliser (CONV), the DMPP treatment, the 3MP+TZ treatment and the zero fertiliser (0N) respectively. Corresponding fertiliser induced emission factors (EFs) were low with only 0.09 - 0.20% of the total applied fertiliser lost as N2O. There was no significant effect of the nitrification inhibitors on yield compared to the CONV treatment for the three vegetable crops (green beans, broccoli, lettuce) grown over the experimental period. This study highlights that N2O emissions from such vegetable cropping system are primarily controlled by post-harvest emissions following the incorporation of vegetable crop residues into the soil. It also shows that the use of nitrification inhibitors can lead to elevated N2O emissions by storing N in the soil profile that is available to soil microbes during the decomposition of the vegetable residues over the post-harvest phase. Hence the use of nitrification inhibitors in vegetable systems has to be treated carefully and fertiliser rates need to be adjusted to avoid excess soil nitrogen during the postharvest phase.
Resumo:
The DAYCENT biogeochemical model was used to investigate how the use of fertilizers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and N2O emissions. The model was validated using comprehensive multi-seasonal, high-frequency dataset from two field investigations conducted on an Oxisol, which is the most common soil type in subtropical regions. Different N fertilizer rates were tested for each N management strategy and simulated under varying weather conditions. DAYCENT was able to reliably predict soil N dynamics, seasonal N2O emissions and crop production, although some discrepancies were observed in the treatments with low or no added N inputs and in the simulation of daily N2O fluxes. Simulations highlighted that the high clay content and the relatively low C levels of the Oxisol analyzed in this study limit the chances for significant amounts of N to be lost via deep leaching or denitrification. The application of urea coated with a nitrification inhibitor was the most effective strategy to minimize N2O emissions. This strategy however did not increase yields since the nitrification inhibitor did not substantially decrease overall N losses compared to conventional urea. Simulations indicated that replacing part of crop N requirements with N mineralized by legume residues is the most effective strategy to reduce N2O emissions and support cereal productivity. The results of this study show that legumes have significant potential to enhance the sustainable and profitable intensification of subtropical cereal cropping systems in Oxisols.
Resumo:
The DAYCENT biogeochemical model was used to investigate how the use of fertilizers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and {N2O} emissions. The model was validated using comprehensive multi-seasonal, high-frequency dataset from two field investigations conducted on an Oxisol, which is the most common soil type in subtropical regions. Different N fertilizer rates were tested for each N management strategy and simulated under varying weather conditions. DAYCENT was able to reliably predict soil N dynamics, seasonal {N2O} emissions and crop production, although some discrepancies were observed in the treatments with low or no added N inputs and in the simulation of daily {N2O} fluxes. Simulations highlighted that the high clay content and the relatively low C levels of the Oxisol analyzed in this study limit the chances for significant amounts of N to be lost via deep leaching or denitrification. The application of urea coated with a nitrification inhibitor was the most effective strategy to minimize {N2O} emissions. This strategy however did not increase yields since the nitrification inhibitor did not substantially decrease overall N losses compared to conventional urea. Simulations indicated that replacing part of crop N requirements with N mineralized by legume residues is the most effective strategy to reduce {N2O} emissions and support cereal productivity. The results of this study show that legumes have significant potential to enhance the sustainable and profitable intensification of subtropical cereal cropping systems in Oxisols.
Resumo:
Urease inhibitor (UI) and nitrification inhibitor (NI) have the potential to improve N-use efficiency of applied urea and minimize N losses via gaseous emissions of ammonia (NH 3) to the atmosphere and nitrate (NO3-) leaching into surface and ground water bodies. There is a growing interest in the formulations of coating chemical fertilizers with both UI and NI. However, limited information is available on the combined use of UI and NI applied with urea fertilizer. Therefore the aim of this study was to investigate the effects of treating urea with both UI and NI to minimize NH 3 volatilization. Two experiments were set up in volatilization chambers under controlled conditions to examine this process. In the first experiment, UR was treated with the urease inhibitor NBPT [N-(n-butyl) thiophosphoric acid triamide] at a rate of 1060 mg kg -1 urea and/or with the nitrification inhibitor DCD (dicyandiamide) at rates equivalent to 5 or 10% of the urea N. A randomized experimental design with five treatments and five replicates was used: 1) UR, 2) UR + NBPT, 3) UR + DCD 10%, 4) UR + NBPT + DCD 5%, and 5) UR + NBPT + DCD 10%. The fertilizer treatments were applied to the surface of an acidic Red Latosol soil moistened to 60% of the maximum water retention and placed inside volatilization chambers. Controls chambers were added to allow for NH 3 volatilized from unfertilized soil or contained in the air that swept over the soil surface. The second experiment had an additional treatment with surface-applied DCD. The chambers were glass vessels (1.5 L) fit with air inlet and outlet tubings to allow air to pass over the soil. Ammonia volatilized was swept and carried to a flask containing a boric acid solution to trap the gas and then measured daily by titration with a standardized H 2SO 4 solution. Continuous measurements were recorded for 19 and 23 days for the first and second experiment, respectively. The soil samples were then analyzed for UR-, NH4+-, and NO3--N. Losses of NH 3 by volatilization with unamended UR ranged from 28 to 37% of the applied N, with peak of losses observed the third day after fertilization. NBPT delayed the peak of NH 3 losses due to urease inhibition and reduced NH 3 volatilization between 54 and 78% when compared with untreated UR. Up to 10 days after the fertilizer application, NH 3 losses had not been affected by DCD in the UR or the UR + NBPT treatments; thereafter, NH 3 volatilization tended to decrease, but not when DCD was present. As a consequence, the addition of DCD caused a 5-16% increase in NH 3 volatilization losses of the fertilizer N applied as UR from both the UR and the UR + NBPT treatments. Because the effectiveness of NBPT to inhibit soil urease activity was strong only in the first week, it could be concluded that DCD did not affect the action of NBPT but rather, enhanced volatilization losses by maintaining higher soil NH4+ concentration and pH for a longer time. Depending on the combination of factors influencing NH 3 volatilization, DCD could even offset the beneficial effect of NBPT in reducing NH 3 volatilization losses. © 2012 Elsevier Ltd.
Resumo:
Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.
Resumo:
Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.
Resumo:
Direct nitrogen (N) losses from pastures contribute to the poor nitrogen use efficiency of the dairy industry, though the exact fate of applied N and the processes involved are largely unknown. Nitrification inhibitors such as DMPP can potentially increase fertilizer N use efficiency (NUE), though few studies globally have examined the effectiveness of DMPP coated urea in pastures. This study quantified the NUE of DMPP combined with reduced application rates, and the effect on N dynamics and plant–soil interactions over an annual ryegrass/kikuyu rotation in Queensland, Australia. Labeled 15N urea and DMPP was applied over 7 winter applications at standard farmer (45 kg N ha−1) and half (23 kg N ha−1) rates. Fertilizer recoveries and NUE were calculated over 13 harvests, and the contribution of fertilizer and soil N estimated. Up to 85% of the annual N harvested was from soil organic matter. DMPP at the lower rate increased annual yields by 31% compared to the equivalent urea treatment with no difference to the high N rates. Almost 40% of the N added at the conventional fertilizer application rate as urea was lost to the environment; 80 kg N ha−1 higher than the low DMPP. Combining the nitrification inhibitor DMPP with reduced fertilizer application rates shows substantial potential to reduce N losses to the environment while sustaining productivity in subtropical dairy pastures.
Resumo:
Nitrous oxide (N2O) is involved in both ozone destruction and global warming. In agricultural soils it is produced by nitrification and denitrification mainly after fertilization. Nitrification inhibitors have been proposed as one of the management tools for the reduction of the potential hazards of fertilizer-derived N2O. Addition of nitrification inhibitors to fertilizers maintains soil N in ammonium form, thereby gaseous N losses by nitrification and denitrification are less likely to occur and there is increased N utilization by the sward. We present a study aimed to evaluate the effectiveness of the nitrification inhibitor dicyandiamide (DCD) and of the slurry additive Actilith F2 on N2O emissions following application of calcium ammonium nitrate or cattle slurry to a mixed clover/ryegrass sward in the Basque Country. The results indicate that large differences in N2O emission occur depending on fertilizer type and the presence or absence of a nitrification inhibitor. There is considerable scope for immediate reduction of emissions by applying DCD with calcium ammonium nitrate or cattle slurry. DCD, applied at 25 kg ha-1, reduced the amount of N lost as N2O by 60% and 42% when applied with cattle slurry and calcium ammonium nitrate, respectively. Actilith F2 did not reduce N2O emissions and it produced a long lasting mineralization of previously immobilized added N.
Resumo:
As atividades industriais petroquímicas, incluindo as refinarias de petróleo, são grandes consumidoras de água e, consequentemente, grandes geradoras de efluentes industriais contendo uma infinidade de contaminantes. No caso das refinarias de petróleo brasileiras, o nitrogênio amoniacal tem se tornado um componente crítico a ser tratado, o que tem sido feito através de processos de tratamento biológicos que utilizam a nitrificação como base. Neste trabalho, foi avaliada a operação de um reator de leito móvel (MBBR), em escala de bancada, utilizando suportes de polietileno com área específica de 820 m2.m-3, para tratar um efluente proveniente de uma refinaria brasileira com alta concentração de nitrogênio amoniacal. O efluente bruto apresentou demanda química de oxigênio entre 100 e 300 mg.L-1, teores de nitrogênio amoniacal entre 60 e 90 mg.L-1 e condutividade elétrica entre 1 e 2 mS.cm-1. Mesmo com variações da qualidade da alimentação da planta ao longo do estudo, como o aumento das concentrações de contaminantes, incluindo inibidores da nitrificação típicos dos efluentes de refinaria, a planta atendeu à Resolução CONAMA 430/2011 (BRASIL, 2011), que limita a concentração de descarte em 20 mg.L-1 para o contaminante nitrogênio amoniacal, em 93% das medições. Para o caso de uma fictícia legislação mais restritiva, que exigisse limite de 5 mg.L-1 desse contaminante, houve sucesso no tratamento em 83% do tempo, com eficiência média de nitrificação de 93,1%, evidenciando que há uma possibilidade real de utilização do processo MBBR em refinarias brasileiras.
Resumo:
通过室内培养、模拟和田间试验相结合的方法,对吡唑类化合物的硝化抑制效应与其结构的关系进行了详细研究。结果表明,多数吡唑类化合物都能有效抑制土壤中的硝化作用,其中以3-甲基吡唑(MP)、3,4-二甲基吡唑和4-氯-3-甲基吡唑(ClMP)及其衍生物效果最佳。4-位被氯原子取代能够提高吡唑类化合物硝化抑制效果。但因水解作用的发生,1-位的取代反应、中和反应和络合反应均不能改变其硝化抑制效果。三种效果较好的吡唑类硝化抑制剂,3,4-二甲基吡唑磷酸盐(DMPP)、1-甲胺酰基-3-甲基吡唑(CMP)和ClMP在土壤中的最适用量分别为纯N用量的1.0%、1.0%和0.5%。吡唑类化合物的硝化抑制效果随土壤温度和有机质含量的升高而降低;在培养前期(0~14d)随土壤含水量和pH的升高而升高,在培养后期(>14d)随土壤含水量和pH的升高而降低。 吡唑类化合物随水在土层中垂直迁移与水平扩散速率与其分子的亲疏水性有关,垂直和水平迁移速率均为MP>DMPP> ClMP。土壤有机质含量是影响吡唑类化合物在土壤中吸附量的主要因素,有机质含量越高土壤对吡唑类化合物的吸附性越强。随pH的升高,土壤对吡唑类化合物的吸附能力降低,但在土壤通常所能达到的pH范围(4.5~8.5),pH对吡唑类化合物在土壤中的吸附作用影响不显著。土壤类型、抑制剂种类、温度与是否重复使用都影响吡唑类硝化抑制剂在土壤中的降解速率,一般褐土>棕壤,DMPP>MPC,低温>高温,未重复施用>重复施用。 以玉米为供试作物进行了吡唑类硝化抑制剂效果的田间试验,结果表明,吡唑类硝化抑制剂和尿素同时施用能显著提高玉米生育前期土壤中NH4+-N含量,降低土壤中NO3--N含量;并能提高玉米产量和氮肥表观利用率;且能使NO3-向土壤下层淋移趋势明显减缓。
Resumo:
土壤类型、温度等条件是影响硝化抑制剂效果的重要因素,为了探讨几种国外报道的高效硝化抑制剂在我国棕壤和红壤上的适应情况,以及温度等条件对于施肥土壤中NO3--N的积累和硝化抑制剂效果的影响,进行了本研究。采用室内培养的方式,研究了ATC、DMPP和CMP(每种抑制剂在两种土壤上分别设两个浓度处理)在我国棕壤和红壤上的效果,与目前应用较多的DCD(0.5%、1.0%两个浓度处理)进行效果对比;研究了温度条件、添加C源及培养条件对土壤中NO3--N积累及CMP硝化抑制效果的影响。结果表明,土壤条件是影响NO3--N积累和所用四种硝化抑制剂(DMPP、CMP、ATC、DCD)抑制效果的一个显著因素,棕壤中氮素转化较快,硝化抑制剂表现出效果较早,在红壤中起效时间较晚,在两种土壤条件下,所用抑制剂都表现出了良好的效果,在60天内ATC、CMP和DMPP的效果与10倍用量的DCD效果类似,甚至好于DCD,在棕壤中同种抑制剂的两个浓度处理之间存在显著差异,但是在红壤几个处理之间没有表现出显著差异;温度条件也是影响NO3--N积累的一个显著因素,从计算硝化抑制率看出,在25℃和30℃下CMP表现出了高效,37℃下抑制率下降,效果变差;添加两个浓度的葡萄糖对于对照中NO3--N的积累以及硝化抑制剂的硝化抑制效果没有表现出显著作用;增加的一步预培养恢复了土壤中微生物的活性在短期内体现了出来,但是长期看对于NO3--N积累量、变化趋势以及硝化抑制率都没有表现出显著作用。
Resumo:
采用室内培养和田间小区实验相结合的方法,研究了硫脲(TU,0.1%,0.3%,0.5%,1.0%,5.0%)不同浓度以及TU和硝化抑制剂双氰胺(DCD)、脲酶抑制剂苯基磷酞二胺(PPD)组合对土壤脲酶活性、土壤尿素氮转化和玉米产量的影响。室内培养试验表明,硫脲既是一种弱脲酶抑制剂又是一种硝化抑制剂。硫脉对脲酶活性和尿素水解均有显著的抑制作用,但是作用时间较短;硫脉用量为0.1%时,就起到了抑制作用,用量0.3%-1.0%之间差异不显著,用量1.0%-5.0%之间抑制效果随用量增加而加强。硫脉不同用量对土壤NH_4~+-N释放和向NO_3~--N的进一步转化有明显的抑制作用,作用强度随抑制剂用量增加而增强。硫脲不仅仅延缓了土壤NH_4~+-N的释放高峰期一周,而且降低了土壤中NO_3-N的富集,使NO_3~--N的释放高峰期向后推迟了10天。本试验条件下,土壤中的NH_4~+-N向NO3--N转化的时间大约为7~10天;土壤中有效氮的含量主要取决于土壤NH4+-N的含量,受NO3-N含量的影响次之。田间模拟培养表明,硫脲及其抑制剂组合对土壤脲酶活性有显著的抑制作用,抑制时间为2周,其中抑制剂组合TU_1+PPD对脲酶活性的抑制作用持续了65天。TU、TUI+DCD和TUI+PPD,对土壤NH_4~--N的释放有显著的抑制作用,对NH_4~+-N向NO_3~--N的进一步转化有显著的抑制作用,进而影响土壤有效氮的总量。总的来看,硫脲及抑制剂组合的抑制效果,依次是TU_1+P PD>TUI+DCD>TU_2>TU_1。硫服及抑制剂组合对玉米株高、百粒重和产量的影响基本是一致的,TU和抑制剂组合Tul十PPD、TU1+DCD的作用效果显著优于单施尿素,处理之间差异不显著。施用抑制剂显著增加了玉米产量,增产幅度为9.14%~11.49%。
Resumo:
Nitrogen (N) is the most required nutrient for corn plants and, in order to supply this demand in highly productive crops, mineral fertilizers are used, especially urea. The disadvantage of urea is the loss of N-NH3 to atmosphere. To reverse this situation, some technologies have been developed, such as nitrification and urease inhibitors, which are used as additives to urea. This work aimed at evaluating the agronomic efficiency of urea stabilized with urease and nitrification inhibitors applied to cover the 2013/2014 corn crop. We evaluated 11 nitrogen fertilizer applied in coverage: urea + PA (41.6% N, 3% Cu); urea + PA (41.6% N, 1.5% Cu); urea + PA (41.6% N, 3% Zn); urea + PA (41.6% N, 1.5% Zn); urea + PA (41.6% N, 0.34% Cu, 0.94% B); urea + PA (41.6% N, 0.25% Cu, 0.68% B); urea + PA (41.6% N); urea (44.3% N, 0.15% Cu, 0.4% B); urea (43% N, 0.1% Cu, 0.3% B, 0.05% Mo); pearled urea (46% N); urea + 0,8% DMPP (45% N) and the control, which did not receive nitrogen topdressing. The evaluations were: Nitrogen losses through volatilization, content and accumulation of N, boron (B), copper (Cu) and zinc (Zn) to the dry matter of aerial parts, grains, and in straw and grain productivity. Fertilizers stabilized with urease and nitrification inhibitors did not reduce the volatilization of ammonia volatilization, when compared to pearled urea. Urea with 0.8% of DMPP nitrification inhibitor (3,4-dimethylpyrazole phosphate) provided higher loss by volatilization, lower productivity and agronomic efficiency compared to pearled urea. The coating of urea with Cu, B and Zn did not increase the accumulation of these nutrients in grains and MSPA plants. The use of fertilizers stabilized and coated with micronutrients did not increase the productivity and agronomic efficiency compared to conventional urea.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this thesis was to study the response mechanisms of grapevine to Fe-deficiency and to potential Fe chlorosis prevention strategies. The results show that the presence of bicarbonate in the nutrient solution shifted the activity of PEPC and TCA cycle enzymes and the accumulation/translocation of organic acids in roots of Fe-deprived plants. The rootstock 140 Ruggeri displayed a typical behavior of calcicole plants under bicarbonate stress. The Fe chlorosis susceptible rootstock 101-14 reacted to a prolonged Fe-deficiency reducing the root activity of PEPC and MDH. Noteworthy, it accumulates high levels of citric acid in roots, indicating a low capacity to utilizing, transporting and/or exudating organic acids into the rhizosfere. In contrast, 110 Richter rootstock is capable to maintain an active metabolism of organic acids in roots, accumulating them to a lesser extent than 101-14. Similarly to 101-14, SO4 genotype displays a strong decrease of mechanisms associated to Fe chlorosis tolerance (PEPC and MDH enzymes). Nevertheless it is able to avoid excessive accumulation of citric acid in roots, similar as 110 Richter rootstock. Intercropping with Festuca rubra increased leaf chlorophyll content and net photosynthesis. In addition, intercropping reduces the activity of PEPC in roots, similary to Fe-chelate supply. Applications of NH4+ with nitrification inhibitor prevents efficiently Fe-deficiency, increases chlorophyll content, and induces similar root biochemical responses as Fe-EDDHA. Without the addition of nitrification inhibitors, the effectiveness of NH4+ supply on Fe chlorosis prevention resulted significantly lower. The aspects intertwined in this investigation highlight the complexity of Fe physiology and the fine metabolic tuning of grapevine genotypes to Fe availability and soil-related environmental factors. The experimental evidences reveal the need to carry out future researches on Fe nutrition maintaining a continous flow of knowledge between theoretical and agronomical perspectives for fully supporting the efforts devoted to convert science into practice.