881 resultados para Nilpotent Groups


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A group is said to have the R(infinity) property if every automorphism has an infinite number of twisted conjugacy classes. We study the question whether G has the R(infinity) property when G is a finitely generated torsion-free nilpotent group. As a consequence, we show that for every positive integer n >= 5, there is a compact nilmanifold of dimension n on which every homeomorphism is isotopic to a fixed point free homeomorphism. As a by-product, we give a purely group theoretic proof that the free group on two generators has the R(infinity) property. The R(infinity) property for virtually abelian and for C-nilpotent groups are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider locally nilpotent subgroups of units in basic tiled rings A, over local rings O which satisfy a weak commutativity condition. Tiled rings are generalizations of both tiled orders and incidence rings. If, in addition, O is Artinian then we give a complete description of the maximal locally nilpotent subgroups of the unit group of A up to conjugacy. All of them are both nilpotent and maximal Engel. This generalizes our description of such subgroups of upper-triangular matrices over O given in M. Dokuchaev, V. Kirichenko, and C. Polcino Milies (2005) [3]. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Questions about nilpotency of groups satisfying Engel conditions have been considered since 1936, when Zorn proved that finite Engel groups are nilpotent. We prove that 4-Engel groups are locally nilpotent. Our proof makes substantial use of both hand and machine calculations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we study the Reidemeister spectrum for metabelian groups of the form Q(n) x Z and Z[1/p](n) x Z. Particular attention is given to the R(infinity)-property of a subfamily of these groups.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eine Gruppe G hat endlichen Prüferrang (bzw. Ko-zentralrang) kleiner gleich r, wenn für jede endlich erzeugte Gruppe H gilt: H (bzw. H modulo seinem Zentrum) ist r-erzeugbar. In der vorliegenden Arbeit werden, soweit möglich, die bekannten Sätze über Gruppen von endlichem Prüferrang (kurz X-Gruppen), auf die wesentlich größere Klasse der Gruppen mit endlichem Ko-zentralrang (kurz R-Gruppen) verallgemeinert.Für lokal nilpotente R-Gruppen, welche torsionsfrei oder p-Gruppen sind, wird gezeigt, dass die Zentrumsfaktorgruppe eine X-Gruppe sein muss. Es folgt, dass Hyperzentralität und lokale Nilpotenz für R-Gruppen identische Bediungungen sind. Analog hierzu sind R-Gruppen genau dann lokal auflösbar, wenn sie hyperabelsch sind. Zentral für die Strukturtheorie hyperabelscher R-Gruppen ist die Tatsache, dass solche Gruppen eine aufsteigende Normalreihe abelscher X-Gruppen besitzen. Es wird eine Sylowtheorie für periodische hyperabelsche R-Gruppen entwickelt. Für torsionsfreie hyperabelsche R-Gruppen wird deren Auflösbarkeit bewiesen. Des weiteren sind lokal endliche R-Gruppen fast hyperabelsch. Für R-Gruppen fallen sehr große Gruppenklassen mit den fast hyperabelschen Gruppen zusammen. Hierzu wird der Begriff der Sektionsüberdeckung eingeführt und gezeigt, dass R-Gruppen mit fast hyperabelscher Sektionsüberdeckung fast hyperabelsch sind.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main goal of this thesis is to understand and link together some of the early works by Michel Rumin and Pierre Julg. The work is centered around the so-called Rumin complex, which is a construction in subRiemannian geometry. A Carnot manifold is a manifold endowed with a horizontal distribution. If further a metric is given, one gets a subRiemannian manifold. Such data arise in different contexts, such as: - formulation of the second principle of thermodynamics; - optimal control; - propagation of singularities for sums of squares of vector fields; - real hypersurfaces in complex manifolds; - ideal boundaries of rank one symmetric spaces; - asymptotic geometry of nilpotent groups; - modelization of human vision. Differential forms on a Carnot manifold have weights, which produces a filtered complex. In view of applications to nilpotent groups, Rumin has defined a substitute for the de Rham complex, adapted to this filtration. The presence of a filtered complex also suggests the use of the formal machinery of spectral sequences in the study of cohomology. The goal was indeed to understand the link between Rumin's operator and the differentials which appear in the various spectral sequences we have worked with: - the weight spectral sequence; - a special spectral sequence introduced by Julg and called by him Forman's spectral sequence; - Forman's spectral sequence (which turns out to be unrelated to the previous one). We will see that in general Rumin's operator depends on choices. However, in some special cases, it does not because it has an alternative interpretation as a differential in a natural spectral sequence. After defining Carnot groups and analysing their main properties, we will introduce the concept of weights of forms which will produce a splitting on the exterior differential operator d. We shall see how the Rumin complex arises from this splitting and proceed to carry out the complete computations in some key examples. From the third chapter onwards we will focus on Julg's paper, describing his new filtration and its relationship with the weight spectral sequence. We will study the connection between the spectral sequences and Rumin's complex in the n-dimensional Heisenberg group and the 7-dimensional quaternionic Heisenberg group and then generalize the result to Carnot groups using the weight filtration. Finally, we shall explain why Julg required the independence of choices in some special Rumin operators, introducing the Szego map and describing its main properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Let F C 0 be the class of all finite groups, and for each nonnegative integer n define by induction the group class FC^(n+1) consisting of all groups G such that for every element x the factor group G/CG ( ^G ) has the property FC^n . Thus FC^1 -groups are precisely groups with finite conjugacy classes, and the class FC^n obviously contains all finite groups and all nilpotent groups with class at most n. In this paper the known theory of FC-groups is taken as a model, and it is shown that many properties of FC-groups have an analogue in the class of FC^n -groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

If E and F are saturated formations, we say that E is strongly contained in F if for any solvable group G with E-subgroup, E, and F-subgroup, F, some conjugate of E is contained in F. In this paper, we investigate the problem of finding the formations which strongly contain a fixed saturated formation E.

Our main results are restricted to formations, E, such that E = {G|G/F(G) ϵT}, where T is a non-empty formation of solvable groups, and F(G) is the Fitting subgroup of G. If T consists only of the identity, then E=N, the class of nilpotent groups, and for any solvable group, G, the N-subgroups of G are the Carter subgroups of G.

We give a characterization of strong containment which depends only on the formations E, and F. From this characterization, we prove:

If T is a non-empty formation of solvable groups, E = {G|G/F(G) ϵT}, and E is strongly contained in F, then

(1) there is a formation V such that F = {G|G/F(G) ϵV}.

(2) If for each prime p, we assume that T does not contain the class, Sp’, of all solvable p’-groups, then either E = F, or F contains all solvable groups.

This solves the problem for the Carter subgroups.

We prove the following result to show that the hypothesis of (2) is not redundant:

If R = {G|G/F(G) ϵSr’}, then there are infinitely many formations which strongly contain R.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let G be a group. We give some formulas for the first group homology and cohomology of a group G with coefficients in an arbitrary G-module (Z) over tilde. More explicit calculations are done in the special cases of free groups, abelian groups and nilpotent groups. We also perform calculations for certain G-module M, by reducing it to the case where the coefficient is a G-module (Z) over tilde. As a result of the well known equalities H-1(X, M) = H-1(pi(1)(X), M) and H-1(X, M) = H-1(pi(1) (X), M), for any G-module M, we are able to calculate the first homology and cohomology groups of topological spaces with certain local system of coefficients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper continues the study of spectral synthesis and the topologies τ∞ and τr on the ideal space of a Banach algebra, concentrating on the class of Banach *-algebras, and in particular on L1-group algebras. It is shown that if a group G is a finite extension of an abelian group then τr is Hausdorff on the ideal space of L1(G) if and only if L1(G) has spectral synthesis, which in turn is equivalent to G being compact. The result is applied to nilpotent groups, [FD]−-groups, and Moore groups. An example is given of a non-compact, non-abelian group G for which L1(G) has spectral synthesis. It is also shown that if G is a non-discrete group then τr is not Hausdorff on the ideal lattice of the Fourier algebra A(G).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We formulate and prove two versions of Miyachi�s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi�s theorem for the group Fourier transform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We formulate and prove two versions of Miyachi’s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi’s theorem for the group Fourier transform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Let F be a reduced irreducible root system and R be a commutative ring. Further, let G(F,R) be a Chevalley group of type F over R and E(F,R) be its elementary subgroup. We prove that if the rank of F is at least 2 and the Bass-Serre dimension of R is finite, then the quotient G(F,R)/E(F,R) is nilpotent by abelian. In particular, when G(F,R) is simply connected the quotient K1(F,R)=G(F,R)/E(F,R) is nilpotent. This result was previously established by Bak for the series A1 and by Hazrat for C1 and D1. As in the above papers we use the localisation-completion method of Bak, with some technical simplifications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let G be a locally finite group satisfying the condition given in the title and suppose that G is not nilpotent-by-Chernikov. It is shown that G has a section S that is not nilpotent-by-Chernikov, where S is either a p-group or a semi-direct product of the additive group A of a locally finite field F by a subgroup K of the multiplicative group of F, where K acts by multiplication on A and generates F as a ring. Non-(nilpotent-by-Chernikov) extensions of this latter kind exist and are described in detail.