963 resultados para Navigational channels
Resumo:
Purpose – This paper compares the experiential consumption values that motivate consumer choice to purchase online for both male and female purchasers and non-purchasers. Design/methodology/approach – Using the theory of consumption value the study examines gendered perceptions of the functional, social and conditional value of using a virtual consumption setting for purchasing. Data was collected through an online survey and analysed using multiple discriminant analysis to determine meaningful differences between male and female purchasers and non-purchasers. Findings – The findings show that male online purchasers are discriminated from female purchasers by social value and from male non-purchasers by conditional value. Female purchasers are discriminated from male purchasers by functional value and from female non-purchasers by social value. Female non-purchasers are discriminated from female purchasers by conditional value. Male non-purchasers are discriminated from male purchasers by functional and social value. Research limitations/implications – Limitations include using an Internet survey and an Australian sample which may impact the generalisability of the findings to a wider population of Internet users. Future research should involve replication of the study in a country more or less developed in terms of gender composition of internet users to extend the generalisability of the findings. Additionally, researchers should examine whether other dimensions of consumption value,such as social influence through on- and off-line communication networks, may influence consumer choice to purchase online. Practical implications – The study provides practical implications for marketers to leverage consumption values that influence male and female consumers’ choice to purchase online and then drive their behaviour online through integrated marketing campaigns that involve both on- and offline strategies. Originality/value – The research makes an original contribution to the consumer behaviour literature as to date, no research has been found that undertakes such a comprehensive gender-based comparison of the perceived value of using a virtual consumption setting for purchasing.
Resumo:
People increasingly communicate over multiple channels, such as SMS, email and IM. Choosing the channel for interaction is typically a considered action and shapes the message itself. In order to explore how people make sense of communication mediums and more generally, social group behaviour, we developed a multichannel communication prototype. Preliminary results indicate that multichannel communication was considered very useful in the group context even considering the increased quantity of messages while it was little used for person-to-person interaction.
Resumo:
In this paper, we define and present a comprehensive classification of user intent for Web searching. The classification consists of three hierarchical levels of informational, navigational, and transactional intent. After deriving attributes of each, we then developed a software application that automatically classified queries using a Web search engine log of over a million and a half queries submitted by several hundred thousand users. Our findings show that more than 80% of Web queries are informational in nature, with about 10% each being navigational and transactional. In order to validate the accuracy of our algorithm, we manually coded 400 queries and compared the results from this manual classification to the results determined by the automated method. This comparison showed that the automatic classification has an accuracy of 74%. Of the remaining 25% of the queries, the user intent is vague or multi-faceted, pointing to the need for probabilistic classification. We discuss how search engines can use knowledge of user intent to provide more targeted and relevant results in Web searching.
Resumo:
The recent development of indoor wireless local area network (WLAN) standards at 2.45 GHz and 5 GHz has led to increased interest in propagation studies at these frequency bands. Within the indoor environment, human body effects can strongly reduce the quality of wireless communication systems. Human body effects can cause temporal variations and shadowing due to pedestrian movement and antenna- body interaction with portable terminals. This book presents a statistical characterisation, based on measurements, of human body effects on indoor narrowband channels at 2.45 GHz and at 5.2 GHz. A novel cumulative distribution function (CDF) that models the 5 GHz narrowband channel in populated indoor environments is proposed. This novel CDF describes the received envelope in terms of pedestrian traffic. In addition, a novel channel model for the populated indoor environment is proposed for the Multiple-Input Multiple-Output (MIMO) narrowband channel in presence of pedestrians at 2.45 GHz. Results suggest that practical MIMO systems must be sufficiently adaptive if they are to benefit from the capacity enhancement caused by pedestrian movement.
Resumo:
If mobile robots are to perform useful tasks in the real-world they will require a catalog of fundamental navigation competencies and a means to select between them. In this paper we describe our work on strongly vision-based competencies: road-following, person or vehicle following, pose and position stabilization. Results from experiments on an outdoor autonomous tractor, a car-like vehicle, are presented.
Communicating with first year students ; so many channels but is anyone listening? A practice report
Resumo:
Communicating with first year students has become a far more complex prospect in the digital age. There is a lot of competition for limited attentional resources from media sources in almost endless channels. Getting important messages to students when there is so much competing information is a difficult prospect for academic and professional divisions of the university alike. Students’ preferences for these communication channels are not well understood and are constantly changing with the introduction of new technology. A first year group was surveyed about their use and preference for various sources of information. Students were generally positive about the use of social networking and other new online media but strongly preferred more established channels for official academic and administrative information. A discussion of the findings and recommendations follows.
Resumo:
User-Web interactions have emerged as an important area of research in the field of information science. In this study, we investigate the effects of users’ cognitive styles on their Web navigational styles and information processing strategies. We report results from the analyses of 594 minutes recorded Web search sessions of 18 participants engaged in 54 scenario-based search tasks. We use questionnaires, cognitive style test, Web session logs and think-aloud as the data collection instruments. We classify users’ cognitive styles as verbalisers and imagers based on Riding’s (1991) Cognitive Style Analysis test. Two classifications of navigational styles and three categories of information processing strategies are identified. Our study findings show that there exist relationships between users’ cognitive style, and their navigational styles and information processing strategies. Verbal users seem to display sporadic navigational styles, and adopt a scanning strategy to understand the content of the search result page, while imagery users follow a structured navigational style and reading approach. We develop a matrix and a model that depicts the relationships between users’ cognitive styles, and their navigational style and information processing strategies. We discuss how the findings from this study could help search engine designers to provide an adaptive navigation support to users.
Resumo:
To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments.
Resumo:
This paper formulates an analytically tractable problem for the wake generated by a long flat bottom ship by considering the steady free surface flow of an inviscid, incompressible fluid emerging from beneath a semi-infinite rigid plate. The flow is considered to be irrotational and two-dimensional so that classical potential flow methods can be exploited. In addition, it is assumed that the draft of the plate is small compared to the depth of the channel. The linearised problem is solved exactly using a Fourier transform and the Wiener-Hopf technique, and it is shown that there is a family of subcritical solutions characterised by a train of sinusoidal waves on the downstream free surface. The amplitude of these waves decreases as the Froude number increases. Supercritical solutions are also obtained, but, in general, these have infinite vertical velocities at the trailing edge of the plate. Consideration of further terms in the expansions suggests a way of canceling the singularity for certain values of the Froude number.
Resumo:
Pedestrian movement is known to cause significant effects on indoor MIMO channels. In this paper, a statistical characterization of the indoor MIMO-OFDM channel subject ot pedestrian movement is reported. The experiment used 4 sending and 4 receiving antennas and 114 sub-carriers at 5.2 GHz. Measurement scenarios varied from zero to ten pedestrians walking randomly between transmitter (tx) and receiver (Rx) arrays. The empirical cumulative distribution function (CDF) of the received fading envelope fits the Ricean distribution with K factors ranging from 7dB to 15 dB, for the 10 pedestrians and vacant scenarios respectively. In general, as the number of pedestrians increase, the CDF slope tends to decrease proportionally. Furthermore, as the number of pedestrians increase, increasing multipath contribution, the dynamic range of channel capacity increases proportionally. These results are consistent with measurement results obtained in controlled scenarios for a fixed narrowband Single-Input Single-Output (SISO) link at 5.2 GHz in previous work. The described empirical characterization provides an insight into the prediction of human-body shadowing effects for indoor MIMO-OFDM channels at 5.2 GHz.
Resumo:
This paper presents channel measurements and weather data collection experiments conducted in a rural environment for an innovative Multi-User-Single-Antenna (MUSA) MIMO-OFDM technology, proposed for rural areas. MUSA MIMO-OFDM uplink channels are established by placing six user terminals (UT) around one access point (AP). Generated terrain profiles and relative received power plots are presented based on the experimental data. According to the relative received signal, MUSA-MIMO-OFDM uplink channels experience temporal fading. Moreover, the correlation between the relative received power and weather variables are presented. Results show that all weather variables exhibit a negative average correlation with received power. Wind speed records the highest average negative correlation coefficient of -0.35. Local maxima of negative correlation, ranging from 0.49 to 0.78, between the weather variables and relative received signals were registered between 5-6 a.m. The highest measured correlation (-0.78) of this time of the day was exhibited by wind speed. These results show the extend of time variation effects experienced by MUSA-MIMO-OFDM channels deployed in rural environments.