857 resultados para NODAL SOLUTIONS
Resumo:
We are concerned with determining values of, for which there exist nodal solutions of the boundary value problems u" + ra(t) f(u) = 0, 0 < t < 1, u(O) = u(1) = 0. The proof of our main result is based upon bifurcation techniques.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some superlinear fourth order elliptic equations are considered. A family of solutions is proved to exist and to concentrate at a point in the limit. The proof relies on variational methods and makes use of a weak version of the Ambrosetti-Rabinowitz condition. The existence and concentration of solutions are related to a suitable truncated equation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
El hormigón estructural sigue siendo sin duda uno de los materiales más utilizados en construcción debido a su resistencia, rigidez y flexibilidad para diseñar estructuras. El cálculo de estructuras de hormigón, utilizando vigas y vigas-columna, es complejo debido a los fenómenos de acoplamiento entre esfuerzos y al comportamiento no lineal del material. Los modelos más empleados para su análisis son el de Bernoulli-Euler y el de Timoshenko, indicándose en la literatura la conveniencia de usar el segundo cuando la relación canto/luz no es pequeña o los elementos están fuertemente armados. El objetivo fundamental de esta tesis es el análisis de elementos viga y viga-columna en régimen no lineal con deformación por cortante, aplicando el concepto de Pieza Lineal Equivalente (PLE). Concepto éste que consiste básicamente en resolver el problema de una pieza en régimen no lineal, transformándolo en uno lineal equivalente, de modo que ambas piezas tengan la misma deformada y los mismos esfuerzos. Para ello, se hizo en primer lugar un estudio comparado de: las distintas propuestas que aplican la deformación por cortante, de los distintos modelos constitutivos y seccionales del hormigón estructural y de los métodos de cálculo no lineal aplicando el método de elementos finitos (MEF). Teniendo en cuenta que la resolución del problema no lineal se basa en la resolución de sucesivos problemas lineales empleando un proceso de homotopía, los problemas lineales de la viga y viga-columna de Timoshenko, se resuelven mediante MEF, utilizando soluciones nodalmente exactas (SNE) y acción repartida equivalente de cualquier orden. Se obtiene así, con muy pocos elementos finitos, una excelente aproximación de la solución, no sólo en los nodos sino en el interior de los elementos. Se introduce el concepto PLE para el análisis de una barra, de material no lineal, sometida a acciones axiales, y se extiende el mismo para el análisis no lineal de vigas y vigas-columna con deformación por cortante. Cabe señalar que para estos últimos, la solución de una pieza en régimen no lineal es igual a la de una en régimen lineal, cuyas rigideces son constantes a trozos, y donde además hay que añadir momentos y cargas puntuales ficticias en los nodos, así como, un momento distribuido ficticio en toda la pieza. Se han desarrollado dos métodos para el análisis: uno para problemas isostáticos y otro general, aplicable tanto a problemas isostáticos como hiperestáticos. El primero determina de entrada la PLE, realizándose a continuación el cálculo por MEF-SNE de dicha pieza, que ahora está en régimen lineal. El general utiliza una homotopía que transforma de manera iterativa, unas leyes constitutivas lineales en las leyes no lineales del material. Cuando se combina con el MEF, la pieza lineal equivalente y la solución del problema original quedan determinadas al final de todo el proceso. Si bien el método general es un procedimiento próximo al de Newton- Raphson, presenta sobre éste la ventaja de permitir visualizar las deformaciones de la pieza en régimen no lineal, de manera tanto cualitativa como cuantitativa, ya que es posible observar en cada paso del proceso la modificación de rigideces (a flexión y cortante) y asimismo la evolución de las acciones ficticias. Por otra parte, los resultados obtenidos comparados con los publicados en la literatura, indican que el concepto PLE ofrece una forma directa y eficiente para analizar con muy buena precisión los problemas asociados a vigas y vigas-columna en las que por su tipología los efectos del cortante no pueden ser despreciados. ABSTRACT The structural concrete clearly remains the most used material in construction due to its strength, rigidity and structural design flexibility. The calculation of concrete structures using beams and beam-column is complex as consequence of the coupling phenomena between stresses and of its nonlinear behaviour. The models most commonly used for analysis are the Bernoulli-Euler and Timoshenko. The second model is strongly recommended when the relationship thickness/span is not small or in case the elements are heavily reinforced. The main objective of this thesis is to analyse the beam and beam-column elements with shear deformation in nonlinear regime, applying the concept of Equivalent Linear Structural Element (ELSE). This concept is basically to solve the problem of a structural element in nonlinear regime, transforming it into an equivalent linear structural element, so that both elements have the same deformations and the same stresses. Firstly, a comparative study of the various proposals of applying shear deformation, of various constitutive and sectional models of structural concrete, and of the nonlinear calculation methods (using finite element methods) was carried out. Considering that the resolution of nonlinear problem is based on solving the successive linear problem, using homotopy process, the linear problem of Timoshenko beam and beam-columns is resolved by FEM, using the exact nodal solutions (ENS) and equivalent distributed load of any order. Thus, the accurate solution approximation can be obtained with very few finite elements for not only nodes, but also for inside of elements. The concept ELSE is introduced to analyse a bar of nonlinear material, subjected to axial forces. The same bar is then used for other nonlinear beam and beam-column analysis with shear deformation. It is noted that, for the last analyses, the solution of a structural element in nonlinear regime is equal to that of linear regime, in which the piecewise-stiffness is constant, the moments and fictitious point loads need to be added at nodes of each element, as well as the fictitious distributed moment on element. Two methods have been developed for analysis: one for isostatic problem and other more general, applicable for both isostatic and hiperstatic problem. The first method determines the ELSE, and then the calculation of this piece is performed by FEM-ENS that now is in linear regime. The general method uses the homotopy that transforms iteratively linear constitutive laws into nonlinear laws of material. When combined with FEM, the ELSE and the solution of the original problem are determined at the end of the whole process. The general method is well known as a procedure closed to Newton-Raphson procedure but presents an advantage that allows displaying deformations of the piece in nonlinear regime, in both qualitative and quantitative way. Since it is possible to observe the modification of stiffness (flexural and shear) in each step of process and also the evolution of the fictitious actions. Moreover, the results compared with those published in the literature indicate that the ELSE concept offers a direct and efficient way to analyze with very good accuracy the problems associated with beams and beams columns in which, by typology, the effects of shear cannot be neglected.
Resumo:
We consider the boundary value problems for nonlinear second-order differential equations of the form u '' + a(t)f (u) = 0, 0 < t < 1, u(0) = u (1) = 0. We give conditions on the ratio f (s)/s at infinity and zero that guarantee the existence of solutions with prescribed nodal properties. Then we establish existence and multiplicity results for nodal solutions to the problem. The proofs of our main results are based upon bifurcation techniques. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We consider boundary value problems for nonlinear second order differential equations of the form u + a(t) f(u) = 0, t epsilon (0, 1), u(0) = u(1) = 0, where a epsilon C([0, 1], (0, infinity)) and f : R --> R is continuous and satisfies f (s)s > 0 for s not equal 0. We establish existence and multiplicity results for nodal solutions to the problems if either f(0) = 0, f(infinity) = infinity or f(0) = infinity, f(0) = 0, where f (s)/s approaches f(0) and f(infinity) as s approaches 0 and infinity, respectively. We use bifurcation techniques to prove our main results. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We consider a parametric nonlinear Neumann problem driven by a nonlinear nonhomogeneous differential operator and with a Caratheodory reaction $f\left( t,x\right) $ which is $p-$superlinear in $x$ without satisfying the usual in such cases Ambrosetti-Rabinowitz condition. We prove a bifurcation type result describing the dependence of the positive solutions on the parameter $\lambda>0,$ we show the existence of a smallest positive solution $\overline{u}_{\lambda}$ and investigate the properties of the map $\lambda\rightarrow\overline{u}_{\lambda}.$ Finally we also show the existence of nodal solutions.
Resumo:
This paper presents an analytical method for analyzing trusses with severe geometrically nonlinear behavior. The main objective is to find analytical solutions for trusses with different axial forces in the bars. The methodology is based on truss kinematics, elastic constitutive laws and equilibrium of nodal forces. The proposed formulation can be applied to hyper elastic materials, such as rubber and elastic foams. A Von Mises truss with two bars made by different materials is analyzed to show the accuracy of this methodology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Die vorliegende Arbeit befaßt sich mit einer Klasse von nichtlinearen Eigenwertproblemen mit Variationsstrukturin einem reellen Hilbertraum. Die betrachteteEigenwertgleichung ergibt sich demnach als Euler-Lagrange-Gleichung eines stetig differenzierbarenFunktionals, zusätzlich sei der nichtlineare Anteil desProblems als ungerade und definit vorausgesetzt.Die wichtigsten Ergebnisse in diesem abstrakten Rahmen sindKriterien für die Existenz spektral charakterisierterLösungen, d.h. von Lösungen, deren Eigenwert gerade miteinem vorgegeben variationellen Eigenwert eines zugehörigen linearen Problems übereinstimmt. Die Herleitung dieserKriterien basiert auf einer Untersuchung kontinuierlicher Familien selbstadjungierterEigenwertprobleme und erfordert Verallgemeinerungenspektraltheoretischer Konzepte.Neben reinen Existenzsätzen werden auch Beziehungen zwischenspektralen Charakterisierungen und denLjusternik-Schnirelman-Niveaus des Funktionals erörtert.Wir betrachten Anwendungen auf semilineareDifferentialgleichungen (sowieIntegro-Differentialgleichungen) zweiter Ordnung. Diesliefert neue Informationen über die zugehörigenLösungsmengen im Hinblick auf Knoteneigenschaften. Diehergeleiteten Methoden eignen sich besonders für eindimensionale und radialsymmetrische Probleme, während einTeil der Resultate auch ohne Symmetrieforderungen gültigist.
Resumo:
Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.
Resumo:
This study evaluated the corrosion kinetics and surface topography of Ti-6Al-4V alloy exposed to mouthwash solutions (0.12% chlorhexidine digluconate, 0.053% cetylpyridinium chloride and 3% hydrogen peroxide) compared to artificial saliva (pH6.5) (control). Twenty Ti-6Al-4V alloy disks were used and divided into 4 groups (n=5). For the electrochemical assay, standard tests as open circuit potential and electrochemical impedance spectroscopy (EIS) were applied at baseline, 7 and 14days after immersion in the solutions. Scanning electron microscopy, atomic force microscopy and profilometry (average roughness - Ra) were used for surface characterization. Total weight loss of disks was calculated. Data were analyzed by ANOVA and Bonferroni's test (α=0.05). Hydrogen peroxide generated the lowest polarization resistance (Rp) values for all periods (P<0.05). For the capacitance (Cdl), similar results were observed among groups at baseline (P=0.098). For the 7 and 14-day periods, hydrogen peroxide promoted the highest Cdl values (P<0.0001). Hydrogen peroxide promoted expressive superficial changes and greater Ra values than the others (P<0.0001). It could be concluded that solutions containing cetylpyridinium chloride and chlorhexidine digluconate might be the mouthwashes of choice during the post-operatory period of dental implants. However, hydrogen peroxide is counter-indicated in these situations. Further studies evaluating the dynamics of these solutions (tribocorrosion) and immersing the disks in daily cycles (two or three times a day) to mimic a clinical situation closest to the application of mouthwashes in the oral cavity are warranted to prove our results.
Resumo:
This study evaluated the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin after immersion in sodium hypochlorite (NaOCl), simulating 20 min of disinfection daily during 180 days. Forty disk-shaped (15 x 4 mm) and 40 rectangular (65 x 10 x 3 mm) specimens were prepared with a microwave-polymerized acrylic resin (Onda-Cryl). Specimens were immersed in either 0.5% NaOCl, 1% NaOCl, Clorox/Calgon and distilled water (control). Color measurements were determined by a portable colorimeter. Three parallel lines, separated by 1.0 mm, were registered on each specimen before and after immersion procedures to analyze the surface roughness. The flexural strength was measured using a 3-point bending test in a universal testing machine with a 50 kgf load cell and a crosshead speed of 1 mm/min. Data were analyzed statistically by ANOVA and Tukey's test (?=0.05). There was no statistically significant differences (p>0.05) among the solutions for color, surface roughness and flexural strength. It may be concluded that immersion in NaOCl solutions simulating short-term daily use during 180 days did not influence the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin.
Resumo:
This study evaluated the effects of fluoride-containing solutions on the surface of commercially pure titanium (CP Ti) obtained by casting. CP Ti specimens were fabricated and randomly assigned to 5 groups (n=10): group 1: stored in distilled water at 37 ± 1ºC; group 2: stored in distilled water at 37 ± 1ºC and daily immersed in 0.05% NaF for 3 min; group 3: stored in distilled water at 37 ± 1ºC and daily immersed in 0.2% NaF for 3 min; group 4: stored in distilled water at 37 ± 1ºC; and immersed in 0.05% NaF every 15 days for 3 min; and group 5: stored in distilled water at 37 ± 1ºC and immersed in 0.2% NaF every 15 days for 3 min. Surface roughness was measured with a profilometer immediately after metallographic polishing of the specimens (T0) and at 15-day intervals until completing 60 days of experiment (T15, T30, T45, T60). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) in surface roughness among the solutions. In conclusion, fluoride-containing solutions (pH 7.0) used as mouthwashes do not damage the surface of cast CP Ti and can be used by patients with titanium-based restorations.
Resumo:
OBJECTIVES: The purpose of this study was to assess the color change of three types of composite resins exposed to coffee and cola drink, and the effect of repolishing on the color stability of these composites after staining. MATERIALS AND METHODS: Fifteen specimens (15 mm diameter and 2 mm thick) were fabricated from microhybrid (Esthet-X; Dentsply and Filtek Z-250; 3M ESPE) and high-density hybrid (Surefil; Dentsply) composites, and were finished and polished with aluminum oxide discs (Sof-Lex; 3M ESPE). Color of the specimens was measured according to the CIE L*a*b* system in a refection spectrophotometer (PCB 6807; BYK Gardner). After baseline color measurements, 5 specimens of each resin were immersed in different staining solutions for 15 days: G1 - distilled water (control), G2 - coffee, G3 - cola soft drink. Afterwards, new color measurement was performed and the specimens were repolished and submitted to new color reading. Color stability was determined by the difference (ΔE) between the coordinates L*, a*, and b* obtained from the specimens before and after immersion into the solutions and after repolishing. RESULTS: There was no statistically signifcant difference (ANOVA, Tukey's test; p>0.05) among the ΔE values for the different types of composites after staining or repolishing. For all composite resins, coffee promoted more color change (ΔE>3.3) than distilled water and the cola soft drink. After repolishing, the ΔE values of the specimens immersed in coffee decreased to clinically acceptable values (ΔE<3.3), but remained signifcantly higher than those of the other groups. CONCLUSIONS: No signifcant difference was found among composite resins or between color values before and after repolishing of specimens immersed in distilled water and cola. Immersing specimens in coffee caused greater color change in all types of composite resins tested in this study and repolishing contributed to decrease staining to clinically acceptable ΔE values.