53 resultados para Multifractal
Resumo:
The search for more realistic modeling of financial time series reveals several stylized facts of real markets. In this work we focus on the multifractal properties found in price and index signals. Although the usual minority game (MG) models do not exhibit multifractality, we study here one of its variants that does. We show that the nonsynchronous MG models in the nonergodic phase is multifractal and in this sense, together with other stylized facts, constitute a better modeling tool. Using the structure function (SF) approach we detected the stationary and the scaling range of the time series generated by the MG model and, from the linear (non-linear) behavior of the SF we identified the fractal (multifractal) regimes. Finally, using the wavelet transform modulus maxima (WTMM) technique we obtained its multifractal spectrum width for different dynamical regimes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fractal geometry is a fundamental approach for describing the complex irregularities of the spatial structure of point patterns. The present research characterizes the spatial structure of the Swiss population distribution in the three Swiss geographical regions (Alps, Plateau and Jura) and at the entire country level. These analyses were carried out using fractal and multifractal measures for point patterns, which enabled the estimation of the spatial degree of clustering of a distribution at different scales. The Swiss population dataset is presented on a grid of points and thus it can be modelled as a "point process" where each point is characterized by its spatial location (geometrical support) and a number of inhabitants (measured variable). The fractal characterization was performed by means of the box-counting dimension and the multifractal analysis was conducted through the Renyi's generalized dimensions and the multifractal spectrum. Results showed that the four population patterns are all multifractals and present different clustering behaviours. Applying multifractal and fractal methods at different geographical regions and at different scales allowed us to quantify and describe the dissimilarities between the four structures and their underlying processes. This paper is the first Swiss geodemographic study applying multifractal methods using high resolution data.
Resumo:
Natural images are characterized by the multiscaling properties of their contrast gradient, in addition to their power spectrum. In this Letter we show that those properties uniquely define an intrinsic wavelet and present a suitable technique to obtain it from an ensemble of images. Once this wavelet is known, images can be represented as expansions in the associated wavelet basis. The resulting code has the remarkable properties that it separates independent features at different resolution level, reducing the redundancy, and remains essentially unchanged under changes in the power spectrum. The possible generalization of this representation to other systems is discussed.
Resumo:
The design of appropriate multifractal analysis algorithms, able to correctly characterize the scaling properties of multifractal systems from experimental, discretized data, is a major challenge in the study of such scale invariant systems. In the recent years, a growing interest for the application of the microcanonical formalism has taken place, as it allows a precise localization of the fractal components as well as a statistical characterization of the system. In this paper, we deal with the specific problems arising when systems that are strictly monofractal are analyzed using some standard microcanonical multifractal methods. We discuss the adaptations of these methods needed to give an appropriate treatment of monofractal systems.
Resumo:
The present research studies the spatial patterns of the distribution of the Swiss population (DSP). This description is carried out using a wide variety of global spatial structural analysis tools such as topological, statistical and fractal measures, which enable the estimation of the spatial degree of clustering of a point pattern. A particular attention is given to the analysis of the multifractality to characterize the spatial structure of the DSP at different scales. This will be achieved by measuring the generalized q-dimensions and the singularity spectrum. This research is based on high quality data of the Swiss Population Census of the Year 2000 at a hectometric resolution (grid 100 x 100 m) issued by the Swiss Federal Statistical Office (FSO).
Resumo:
The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions, the deterministic nature of the chaotic oscillations is clearly identified.
Resumo:
The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions, the deterministic nature of the chaotic oscillations is clearly identified.
Resumo:
Starting with the work of Lapidus and van Frankenhuysen a number of papers have introduced zeta functions as a way of capturing multifractal information. In this paper we propose a new multifractal zeta function and show that under certain conditions the abscissa of convergence yields the Hausdorff multifractal spectrum for a class of measures.
Percolação convencional, percolação correlacionada e percolação por invasão num suporte multifractal
Resumo:
In this work we have studied the problem of percolation in a multifractal geometric support, in its different versions, and we have analysed the conection between this problem and the standard percolation and also the connection with the critical phenomena formalism. The projection of the multifractal structure into the subjacent regular lattice allows to map the problem of random percolation in the multifractal lattice into the problem of correlated percolation in the regular lattice. Also we have investigated the critical behavior of the invasion percolation model in this type of environment. We have discussed get the finite size effects
Resumo:
In this work we present the principal fractals, their caracteristics, properties abd their classification, comparing them to Euclidean Geometry Elements. We show the importance of the Fractal Geometry in the analysis of several elements of our society. We emphasize the importance of an appropriate definition of dimension to these objects, because the definition we presently know doesn t see a satisfactory one. As an instrument to obtain these dimentions we present the Method to count boxes, of Hausdorff- Besicovich and the Scale Method. We also study the Percolation Process in the square lattice, comparing it to percolation in the multifractal subject Qmf, where we observe som differences between these two process. We analize the histogram grafic of the percolating lattices versus the site occupation probability p, and other numerical simulations. And finaly, we show that we can estimate the fractal dimension of the percolation cluster and that the percolatin in a multifractal suport is in the same universality class as standard percolation. We observe that the area of the blocks of Qmf is variable, pc is a function of p which is related to the anisotropy of Qmf
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Multifractal analysis is now increasingly used to characterize soil properties as it may provide more information than a single fractal model. During the building of a large reservoir on the Parana River (Brazil), a highly weathered soil profile was excavated to a depth between 5 and 8 m. Excavation resulted in an abandoned area with saprolite materials and, in this area, an experimental field was established to assess the effectiveness of different soil rehabilitation treatments. The experimental design consisted of randomized blocks. The aim of this work was to characterize particle-size distributions of the saprolite material and use the information obtained to assess between-block variability. Particle-size distributions of the experimental plots were characterized by multifractal techniques. Ninety-six soil samples were analyzed routinely for particle-size distribution by laser diffractometry in a range of scales, varying from 0.390 to 2000 mu m. Six different textural classes (USDA) were identified with a clay content ranging from 16.9% to 58.4%. Multifractal models described reasonably well the scaling properties of particle-size distributions of the saprolite material. This material exhibits a high entropy dimension, D-1. Parameters derived from the left side (q > 0) of the f(alpha) spectra, D-1, the correlation dimension (D-2) and the range (alpha(0)-alpha(q+)), as well as the total width of the spectra (alpha(max) - alpha(min)) all showed dependence on the clay content. Sand, silt and clay contents were significantly different among treatments as a consequence of soil intrinsic variability. The D, and the Holder exponent of order zero, alpha(0), were not significantly different between treatments; in contrast, D-2 and several fractal attributes describing the width of the f(alpha) spectra were significantly different between treatments. The only parameter showing significant differences between sampling depths was (alpha(0) - alpha(q+)). Scale independent fractal attributes may be useful for characterizing intrinsic particle-size distribution variability. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A Digital Elevation Model (DEM) provides the information basis used for many geographic applications such as topographic and geomorphologic studies, landscape through GIS (Geographic Information Systems) among others. The DEM capacity to represent Earth?s surface depends on the surface roughness and the resolution used. Each DEM pixel depends on the scale used characterized by two variables: resolution and extension of the area studied. DEMs can vary in resolution and accuracy by the production method, although there are statistical characteristics that keep constant or very similar in a wide range of scales. Based on this property, several techniques have been applied to characterize DEM through multiscale analysis directly related to fractal geometry: multifractal spectrum and the structure function. The comparison of the results by both methods is discussed. The study area is represented by a 1024 x 1024 data matrix obtained from a DEM with a resolution of 10 x 10 m each point, which correspond with a region known as ?Monte de El Pardo? a property of Spanish National Heritage (Patrimonio Nacional Español) of 15820 Ha located to a short distance from the center of Madrid. Manzanares River goes through this area from North to South. In the southern area a reservoir is found with a capacity of 43 hm3, with an altitude of 603.3 m till 632 m when it is at the highest capacity. In the middle of the reservoir the minimum altitude of this area is achieved.
Resumo:
We use multifractal analysis (MFA) to investigate how the Rényi dimensions of the solid mass and the pore space in porous structures are related to each other. To our knowledge, there is no investigation about the relationship of Rényi or generalized dimensions of two phases of the same structure.