A multifractal zeta function for Gibbs measures supported on cookie-cutter sets
Data(s) |
18/03/2013
|
---|---|
Resumo |
Starting with the work of Lapidus and van Frankenhuysen a number of papers have introduced zeta functions as a way of capturing multifractal information. In this paper we propose a new multifractal zeta function and show that under certain conditions the abscissa of convergence yields the Hausdorff multifractal spectrum for a class of measures. |
Formato |
text |
Identificador |
http://centaur.reading.ac.uk/46856/1/Arxiv%20copy%20multifractal%20paper.pdf Baker, S. <http://centaur.reading.ac.uk/view/creators/90006902.html> (2013) A multifractal zeta function for Gibbs measures supported on cookie-cutter sets. Nonlinearity, 26 (4). pp. 1125-1142. ISSN 1361-6544 doi: 10.1088/0951-7715/26/4/1125 <http://dx.doi.org/10.1088/0951-7715/26/4/1125> |
Idioma(s) |
en |
Publicador |
IOP Publishing |
Relação |
http://centaur.reading.ac.uk/46856/ creatorInternal Baker, Simon 10.1088/0951-7715/26/4/1125 |
Tipo |
Article PeerReviewed |