961 resultados para Multidimensional Numbered Information Spaces
Resumo:
The concept of data independence designates the techniques that allow data to be changed without affecting the applications that process it. The different structures of the information bases require corresponded tools for supporting data independence. A kind of information bases (the Multi-dimensional Numbered Information Spaces) are pointed in the paper. The data independence in such information bases is discussed.
Resumo:
An approach for organizing the information in the data warehouses is presented in the paper. The possibilities of the numbered information spaces for building data warehouses are discussed. An application is outlined in the paper.
Resumo:
his article presents some of the results of the Ph.D. thesis Class Association Rule Mining Using MultiDimensional Numbered Information Spaces by Iliya Mitov (Institute of Mathematics and Informatics, BAS), successfully defended at Hasselt University, Faculty of Science on 15 November 2011 in Belgium
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
Free and Open Source Software (FOSS) has gained increased interest in the computer software industry, but assessing its quality remains a challenge. FOSS development is frequently carried out by globally distributed development teams, and all stages of development are publicly visible. Several product and process-level quality factors can be measured using the public data. This thesis presents a theoretical background for software quality and metrics and their application in a FOSS environment. Information available from FOSS projects in three information spaces are presented, and a quality model suitable for use in a FOSS context is constructed. The model includes both process and product quality metrics, and takes into account the tools and working methods commonly used in FOSS projects. A subset of the constructed quality model is applied to three FOSS projects, highlighting both theoretical and practical concerns in implementing automatic metric collection and analysis. The experiment shows that useful quality information can be extracted from the vast amount of data available. In particular, projects vary in their growth rate, complexity, modularity and team structure.
Resumo:
Guo and Nixon proposed a feature selection method based on maximizing I(x; Y),the multidimensional mutual information between feature vector x and class variable Y. Because computing I(x; Y) can be difficult in practice, Guo and Nixon proposed an approximation of I(x; Y) as the criterion for feature selection. We show that Guo and Nixon's criterion originates from approximating the joint probability distributions in I(x; Y) by second-order product distributions. We remark on the limitations of the approximation and discuss computationally attractive alternatives to compute I(x; Y).
Resumo:
Der Beitrag fokussiert die Entwicklung, den Einsatz und die Nutzung von innovativen Technologien zur Unterstützung von Bildungsszenarien in Schule, Hochschule und Weiterbildung. Ausgehend von den verschiedenen Phasen des Corporate Learning, Social Learning, Mobile Learning und Intelligent Learning wird in einem ersten Abschnitt das Nutzungsverhalten von Technologien durch Kinder, Jugendliche und (junge) Erwachsene in Schule, Studium und Lehre betrachtet. Es folgt die Darstellung technologischer Entwicklungen auf Basis des Technology Life Cycle und die Konsequenzen von unterschiedlichen Entwicklungszuständen und Reifegraden von Technologien wie Content Learning Management, sozialen Netzwerken, mobilen Endgeräten, multidimensionalen und -modalen Räumen bis hin zu Anwendungen augmentierter Realität und des Internets der Dinge, Dienste und Daten für den Einsatz und die Nutzung in Bildungsszenarien. Nach der Darstellung von Anforderungen an digitale Technologien hinsichtlich Inhalte, Didaktik und Methodik wie etwa hinsichtlich der Erstellung von Inhalten, deren Wiederverwendung, Digitalisierung und Auffindbarkeit sowie Standards werden methodische Hinweise zur Nutzung digitaler Technologien zur Interaktion von Lernenden, von Lehrenden, sozialer Interaktion, kollaborativem Autorieren, Kommentierung, Evaluation und Begutachtung gegeben. Abschließend werden - differenziert für Schule und Hochschule - Erkenntnisse zu Rahmenbedingungen, Einflussgrößen, hemmenden und fördernden Faktoren sowie Herausförderungen bei der Einführung und nachhaltigen Implementation digitaler Technologien im schulischen Unterricht, in Lehre, Studium und Weiterbildung im Überblick zusammengefasst.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
Mobile devices are very popular among tertiary student populations. This study looks at student use of hand-held mobile devices within the context of a first year programming unit. This research sought for ways in which an educational app on these devices could be successfully integrated into such a class's learning.
Resumo:
A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model.
Resumo:
This paper introduces a novel vision for further enhanced Internet of Things services. Based on a variety of data (such as location data, ontology-backed search queries, in- and outdoor conditions) the Prometheus framework is intended to support users with helpful recommendations and information preceding a search for context-aware data. Adapted from artificial intelligence concepts, Prometheus proposes user-readjusted answers on umpteen conditions. A number of potential Prometheus framework applications are illustrated. Added value and possible future studies are discussed in the conclusion.
Resumo:
Nuevas biotecnologías permiten obtener información para caracterizar materiales genéticos a partir de múltiples marcadores, ya sean éstos moleculares y/o morfológicos. La ordenación del material genético a través de la exploración de patrones de variabilidad multidimensionales se aborda mediante diversas técnicas de análisis multivariado. Las técnicas multivariadas de reducción de dimensión (TRD) y la representación gráfica de las mismas cobran sustancial importancia en la visualización de datos multivariados en espacios de baja dimensión ya que facilitan la interpretación de interrelaciones entre las variables (marcadores) y entre los casos u observaciones bajo análisis. Tanto el Análisis de Componentes Principales, como el Análisis de Coordenadas Principales y el Análisis de Procrustes Generalizado son TRD aplicables a datos provenientes de marcadores moleculares y/o morfológicos. Los Árboles de Mínimo Recorrido y los biplots constituyen técnicas para lograr representaciones geométricas de resultados provenientes de TRD. En este trabajo se describen estas técnicas multivariadas y se ilustran sus aplicaciones sobre dos conjuntos de datos, moleculares y morfológicos, usados para caracterizar material genético fúngico.