819 resultados para Moving Average Filter (MAF)
Resumo:
This paper proposes a filter based on a general regression neural network and a moving average filter, for preprocessing half-hourly load data for short-term multinodal load forecasting, discussed in another paper. Tests made with half-hourly load data from nine New Zealand electrical substations demonstrate that this filter is able to handle noise, missing data and abnormal data. © 2011 IEEE.
Resumo:
Ever since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
The thesis examines the profitability of DMAC trading rules in the Finnish stock market over the 1996-2012 period. It contributes to the existing technical analysis literature by comparing for the first time the performance of DMAC strategies based on individual stock trading portfolios to the performance of index trading strategies based on the trading on the index (OMX Helsinki 25) that consists of the same stocks. Besides, the market frictions including transaction costs and taxes are taken into account, and the results are reported from both institutional and individual investor’s perspective. Performance characteristic of DMAC rules are evaluated by simulating 19,900 different trading strategies in total for two non- overlapping 8-year sub-periods, and decomposing the full-sample-period performance of DMAC trading strategies into distinct bullish- and bearish-period performances. The results show that the best DMAC rules have predictive power on future price trends, and these rules are able to outperform buy-and-hold strategy. Although the performance of the DMAC strategies is highly dependent on the combination of moving average lengths, the best DMAC rules of the first sub-period have also performed well during the latter sub-period in the case of individual stock trading strategies. According to the results, the outperformance of DMAC trading rules over buy-and-hold strategy is mostly attributed to their superiority during the bearish periods, and particularly, during stock market crashes.
Resumo:
Se analiza la manera en que se realizan las tesis doctorales en educación matemática en España. Se utiliza la metodología ARIMA (Auto-Regressive Integrated Moving Average) para realizar el análisis de manera diacrónica sobre datos longitudinales. Se hace incapié en la importancia de la metodología usada y sus ventajas frente a las metodologías tradicionalmente usadas en análisis diacrónicos. Se exponen las cuatro fases de la metodología ARIMA, correspondientes a la identificación del proceso, la estimación de cambio en el proceso, la validación del mismo y la predicción de sus consecuencias.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Includes bibliography