1000 resultados para Monodromy Group


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In vielen Teilgebieten der Mathematik ist es w"{u}nschenswert, die Monodromiegruppe einer homogenen linearen Differenzialgleichung zu verstehen. Es sind nur wenige analytische Methoden zur Berechnung dieser Gruppe bekannt, daher entwickeln wir im ersten Teil dieser Arbeit eine numerische Methode zur Approximation ihrer Erzeuger.rnIm zweiten Abschnitt fassen wir die Grundlagen der Theorie der Uniformisierung Riemannscher Fl"achen und die der arithmetischen Fuchsschen Gruppen zusammen. Auss erdem erkl"aren wir, wie unsere numerische Methode bei der Bestimmung von uniformisierenden Differenzialgleichungen dienlich sein kann. F"ur arithmetische Fuchssche Gruppen mit zwei Erzeugern erhalten wir lokale Daten und freie Parameter von Lam'{e} Gleichungen, welche die zugeh"origen Riemannschen Fl"achen uniformisieren. rnIm dritten Teil geben wir einen kurzen Abriss zur homologischen Spiegelsymmetrie und f"uhren die $widehat{Gamma}$-Klasse ein. Wir erkl"aren wie diese genutzt werden kann, um eine Hodge-theoretische Version der Spiegelsymmetrie f"ur torische Varit"aten zu beweisen. Daraus gewinnen wir Vermutungen "uber die Monodromiegruppe $M$ von Picard-Fuchs Gleichungen von gewissen Familien $f:mathcal{X}rightarrow bbp^1$ von $n$-dimensionalen Calabi-Yau Variet"aten. Diese besagen erstens, dass bez"uglich einer nat"urlichen Basis die Monodromiematrizen in $M$ Eintr"age aus dem K"orper $bbq(zeta(2j+1)/(2 pi i)^{2j+1},j=1,ldots,lfloor (n-1)/2 rfloor)$ haben. Und zweitens, dass sich topologische Invarianten des Spiegelpartners einer generischen Faser von $f:mathcal{X}rightarrow bbp^1$ aus einem speziellen Element von $M$ rekonstruieren lassen. Schliess lich benutzen wir die im ersten Teil entwickelten Methoden zur Verifizierung dieser Vermutungen, vornehmlich in Hinblick auf Dimension drei. Dar"uber hinaus erstellen wir eine Liste von Kandidaten topologischer Invarianten von vermutlich existierenden dreidimensionalen Calabi-Yau Variet"aten mit $h^{1,1}=1$.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We define Picard cycles on each smooth three-sheeted Galois cover C of the Riemann sphere. The moduli space of all these algebraic curves is a nice Shimura surface, namely a symmetric quotient of the projective plane uniformized by the complex two-dimensional unit ball. We show that all Picard cycles on C form a simple orbit of the Picard modular group of Eisenstein numbers. The proof uses a special surface classification in connection with the uniformization of a classical Picard-Fuchs system. It yields an explicit symplectic representation of the braid groups (coloured or not) of four strings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese dedica-se ao estudo de hipermapas regulares bicontactuais, hipermapas com a propriedade que cada hiperface contacta só com outras duas hiperfaces. Nos anos 70, S. Wilson classificou os mapas bicontactuais e, em 2003, Wilson e Breda d’Azevedo classificaram os hipermapas bicontactuais no caso não-orientável. Quando esta propriedade é transferida para hipermapas origina três tipos de bicontactualidade, atendendo ao modo como as duas hiperfaces aparecem à volta de uma hiperface fixa: edge-twin, vertextwin and alternate (dois deles são o dual um do outro). Um hipermapa topológico é um mergulho celular de um grafo conexo trivalente numa superfície compacta e conexa tal que as células são 3-coloridas. Ou de maneira mais simples, um hipermapa pode ser visto como um mapa bipartido. Um hipermapa orientado regular é um triplo ordenado consistindo num conjunto finito e dois geradores, que são permutações (involuções) do conjunto tal que o grupo gerado por eles, chamado o grupo de monodromia, actua regularmente no conjunto. Nesta tese, damos uma classificação de todos os hipermapas orientados regulares bicontactuais e, para completar, reclassificamos, usando o nosso método algébrico, os hipermapas não-orientáveis bicontactuais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let f : U subset of R(2) -> R(3) be a representative of a finitely determined map germ f : (R(2), 0) -> (R(3), 0). Consider the curve obtained as the intersection of the image of the mapping f with a sufficiently small sphere s(epsilon)(2) centered at the origin in R(3), call this curve the associated doodle of the map germ f. For a large class of map germs the associated doodle has many transversal self-intersections. The topological classification of such map germs is considered from the point of view of the associated doodles. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of this paper is to contribute to the understanding of complex polynomials and Blaschke products, two very important function classes in mathematics. For a polynomial, $f,$ of degree $n,$ we study when it is possible to write $f$ as a composition $f=g\circ h$, where $g$ and $h$ are polynomials, each of degree less than $n.$ A polynomial is defined to be \emph{decomposable }if such an $h$ and $g$ exist, and a polynomial is said to be \emph{indecomposable} if no such $h$ and $g$ exist. We apply the results of Rickards in \cite{key-2}. We show that $$C_{n}=\{(z_{1},z_{2},...,z_{n})\in\mathbb{C}^{n}\,|\,(z-z_{1})(z-z_{2})...(z-z_{n})\,\mbox{is decomposable}\},$$ has measure $0$ when considered a subset of $\mathbb{R}^{2n}.$ Using this we prove the stronger result that $$D_{n}=\{(z_{1},z_{2},...,z_{n})\in\mathbb{C}^{n}\,|\,\mbox{There exists\,}a\in\mathbb{C}\,\,\mbox{with}\,\,(z-z_{1})(z-z_{2})...(z-z_{n})(z-a)\,\mbox{decomposable}\},$$ also has measure zero when considered a subset of $\mathbb{R}^{2n}.$ We show that for any polynomial $p$, there exists an $a\in\mathbb{C}$ such that $p(z)(z-a)$ is indecomposable, and we also examine the case of $D_{5}$ in detail. The main work of this paper studies finite Blaschke products, analytic functions on $\overline{\mathbb{D}}$ that map $\partial\mathbb{D}$ to $\partial\mathbb{D}.$ In analogy with polynomials, we discuss when a degree $n$ Blaschke product, $B,$ can be written as a composition $C\circ D$, where $C$ and $D$ are finite Blaschke products, each of degree less than $n.$ Decomposable and indecomposable are defined analogously. Our main results are divided into two sections. First, we equate a condition on the zeros of the Blaschke product with the existence of a decomposition where the right-hand factor, $D,$ has degree $2.$ We also equate decomposability of a Blaschke product, $B,$ with the existence of a Poncelet curve, whose foci are a subset of the zeros of $B,$ such that the Poncelet curve satisfies certain tangency conditions. This result is hard to apply in general, but has a very nice geometric interpretation when we desire a composition where the right-hand factor is degree 2 or 3. Our second section of finite Blaschke product results builds off of the work of Cowen in \cite{key-3}. For a finite Blaschke product $B,$ Cowen defines the so-called monodromy group, $G_{B},$ of the finite Blaschke product. He then equates the decomposability of a finite Blaschke product, $B,$ with the existence of a nontrivial partition, $\mathcal{P},$ of the branches of $B^{-1}(z),$ such that $G_{B}$ respects $\mathcal{P}$. We present an in-depth analysis of how to calculate $G_{B}$, extending Cowen's description. These methods allow us to equate the existence of a decomposition where the left-hand factor has degree 2, with a simple condition on the critical points of the Blaschke product. In addition we are able to put a condition of the structure of $G_{B}$ for any decomposable Blaschke product satisfying certain normalization conditions. The final section of this paper discusses how one can put the results of the paper into practice to determine, if a particular Blaschke product is decomposable. We compare three major algorithms. The first is a brute force technique where one searches through the zero set of $B$ for subsets which could be the zero set of $D$, exhaustively searching for a successful decomposition $B(z)=C(D(z)).$ The second algorithm involves simply examining the cardinality of the image, under $B,$ of the set of critical points of $B.$ For a degree $n$ Blaschke product, $B,$ if this cardinality is greater than $\frac{n}{2}$, the Blaschke product is indecomposable. The final algorithm attempts to apply the geometric interpretation of decomposability given by our theorem concerning the existence of a particular Poncelet curve. The final two algorithms can be implemented easily with the use of an HTML

Relevância:

60.00% 60.00%

Publicador:

Resumo:

*Research partially supported by INTAS grant 97-1644.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research partially supported by INTAS grant 97-1644

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central elements of the algebra of monodromy matrices associated with the Z(n) R-matrix are studied. When the crossing parameter w takes a special rational value w = n/N, where N and n are positive coprime integers, the center is substantially larger than that in the generic case for which the quantum determinant provides the center. In the trigonometric limit, the situation corresponds to the quantum group at roots of unity. This is a higher rank generalization of the recent results by Belavin and Jimbo. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: