995 resultados para Modular invariant theory
Resumo:
In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
In this thesis we study the invariant rings for the Sylow p-subgroups of the nite classical groups. We have successfully constructed presentations for the invariant rings for the Sylow p-subgroups of the unitary groups GU(3; Fq2) and GU(4; Fq2 ), the symplectic group Sp(4; Fq) and the orthogonal group O+(4; Fq) with q odd. In all cases, we obtained a minimal generating set which is also a SAGBI basis. Moreover, we computed the relations among the generators and showed that the invariant ring for these groups are a complete intersection. This shows that, even though the invariant rings of the Sylow p-subgroups of the general linear group are polynomial, the same is not true for Sylow p-subgroups of general classical groups. We also constructed the generators for the invariant elds for the Sylow p-subgroups of GU(n; Fq2 ), Sp(2n; Fq), O+(2n; Fq), O-(2n + 2; Fq) and O(2n + 1; Fq), for every n and q. This is an important step in order to obtain the generators and relations for the invariant rings of all these groups.
Resumo:
2010 Mathematics Subject Classification: 53A07, 53A35, 53A10.
Resumo:
2000 Mathematics Subject Classification: 13N15, 13A50, 16W25.
Resumo:
2000 Mathematics Subject Classification: 13N15, 13A50, 13F20.
Resumo:
The presented work aimed to present the Modular Construction scenario, relating it to the fundamentals assumptions on the Modular Coordination Theory. The presentation of this theory, its historical development, its scope and tools, were conceived to further, show how the applicability on the conceptual and design phases is done. Also, studies cases are shown, in order to illustrate didactically how this process occurs. Basing on these studies, considerations are made about the use of modulation in projects in Brazil, at the expense of what happens on the international scenario, to highlight the importance of Modular Coordination for raising the standards of construction quality and rationality in the country
Resumo:
The presented work aimed to present the Modular Construction scenario, relating it to the fundamentals assumptions on the Modular Coordination Theory. The presentation of this theory, its historical development, its scope and tools, were conceived to further, show how the applicability on the conceptual and design phases is done. Also, studies cases are shown, in order to illustrate didactically how this process occurs. Basing on these studies, considerations are made about the use of modulation in projects in Brazil, at the expense of what happens on the international scenario, to highlight the importance of Modular Coordination for raising the standards of construction quality and rationality in the country
Resumo:
Dans la th´eorie des repr´esentations modulaires des groupes finis, les modules d?endo-permutation occupent une place importante. En e_et, c?est le r?ole jou´e par ces modules dans l?analyse de la structure de certains modules simples pour des groupes finis p-nilpotents, qui a amen´e E. Dade `a en introduire le concept, en 1978. Quelques ann´ees plus tard, L. Puig a d´emontr´e que la source de n?importe quel module simple pour un groupe fini p-r´esoluble quelconque est un module d?endo-permutation. Plus r´ecemment, on s?est rendu compte que ces modules interviennent aussi dans l?analyse locale des cat´egories d´eriv´ees et dans l?´etude des syst`emes de fusion. La situation que l?on consid`ere est la suivante. On se donne un nombre premier p, un p-groupe fini P, un corps alg´ebriquement clos k de caract´eristique p et on veut d´eterminer tous les kP-modules d?endo-permutation couverts ind´ecomposables de type fini, c?est-`a-dire tous les kP-modules ind´ecomposables de type fini, tels que leur alg`ebre d?endomorphismes est un kP-module de permutation ayant un facteur direct trivial. On d´efinit une relation d?´equivalence sur l?ensemble de ces kP-modules et le produit tensoriel des modules induit une structure de groupe ab´elien sur l?ensemble des classes d?´equivalence. On appelle ce groupe, le groupe de Dade de P. Ainsi, classifier les modules d?endo-permutation couverts revient `a d´eterminer le groupe de Dade de P. Le groupe de Dade d?un p-groupe fini arbitraire est encore inconnu, bien qu?E. Dade, en 1978, ´etait d´ej`a parvenu `a la classification dans le cas o`u P est ab´elien. La premi`ere partie de ce travail de th`ese est consacr´ee au probl`eme de la classification dans le cas g´en´eral et r´esoud la question dans le cas de deux familles de p-groupes finis, `a savoir celle des p-groupes m´etacycliques, pour un nombre premier p impair, et celle des 2-groupes extrasp´eciaux, de la forme D8 _ · · · _ D8. Ces deux choix ont ´et´e motiv´es par le fait que ces groupes sont "presque" ab´eliens. De plus, certains r´esultats sur la structure du groupe de Dade d?un p-groupe fini quelconque rendent le groupe de Dade des groupes de ces deux familles plus simple `a ´etudier. Dans un deuxi`eme temps, nous nous sommes int´eress´es `a deux occurrences de ces modules dans la th´eorie de la repr´esentation des groupes finis, c?est-`a-dire `a deux raisons qui motivent leur ´etude. Ainsi, nous avons r´ealis´e des modules d?endo-permutation comme sources de modules simples. En particulier, il s?av`ere que, dans le cas d?un nombre premier p impair, tout module d?endo-permutation ind´ecomposable dont la classe est un ´el´ement de torsion dans le groupe de Dade est la source d?un module simple. Finalement, nous avons d´etermin´e, parmi tous les modules d?endo-permutation connus actuellement, lesquels poss`edent une r´esolution de permutation endo-scind´ee. Nous sommes arriv´es `a la conclusion que les seuls modules d?endo-permutation qui n?ont pas de r´esolution de permutation endo-scind´ee sont les modules "exceptionnels" apparaissant pour un 2-groupe de quaternions g´en´eralis´es.<br/><br/>In modular representation theory, endo-permutation modules occupy an important position. Indeed, the role that these modules play, in the analysis of the structure of some particular simple modules for finite p-nilpotent groups, induced E. Dade, in 1978, to give them their current name. A few years later, L. Puig proved that the source of any simple module for any finite psolvable group is an endo-permutation module. More recently, the occurrence of endo-permutation modules has also been noticed in the local analysis of splendid equivalences between derived categories and in the study of fusion systems. We consider the following situation. Given a prime number p, a finite pgroup P and an algebraically closed field k of characteristic p, we are looking for all finitely generated indecomposable capped endo-permutation kP-modules. That is, all finitely generated indecomposable kP-modules such that their endomorphism algebra is a permutation kP-module having a trivial direct summand. Then, we define an equivalence relation on the set of all isomorphism classes of such modules, and it turns out that the tensor product (over k) induces a structure of abelian group on this set. We call this group the Dade group of P. Hence, classifying all indecomposable finitely generated capped endo-permutation kPmodules is equivalent to determining the Dade group of P. At present, the Dade group of an arbitrary finite p-group is still unknown. However, E. Dade computed the Dade group of all finite abelian p-groups, in 1978 already. The first part of this doctoral thesis is concerned with the problem of the classification in the general case and solve it in the case of two families of finite p-groups, namely the metacyclic p-groups, for an odd prime number p, and the extraspecial 2-groups of the shape D8 _· · ·_D8. These two choices have been motivated by the fact that these groups are not far from being abelian. Moreover, some general results concerning the Dade group of arbitrary finite p-groups suggest that the Dade group of the groups belonging to these two families is easier to study. In the second part of this thesis, we have been looking at two particular occurrences of these modules in representation theory of finite groups which motivate the interest of their classification. Thus, we realised endo-permutation modules as sources of simple modules. In particular, it turns out that, in case p is an odd prime, any indecomposable module whose class in the Dade group is a torsion element is the source of some simple module. Finally, we considered all the modules we know at present and determined which ones have an endo-split permutation resolution. We could then conclude that all but the "exceptionnal" modules occurring in the generalized quaternion case have an endo-split permutation resolution.<br/><br/>"Module d?endo-permutation" n?est pas le nom d?une maladie exotique contagieuse (du moins pas `a ma connaissance), comme vous pourriez peut-?etre l?imaginer si vous faites partie des personnes qui croient que le titre de docteur n?est destin´e qu?aux m´edecins. Dans ce cas, il se peut que le sujet dont il est question ici vous cause quelques naus´ees et r´eveille de douloureux souvenirs d?´ecole, car un module d?endo-permutation est un objet math´ematique, alg´ebrique, plus pr´ecis´ement. Ce concept a ´et´e introduit il y a un quart de si`ecle, de l?autre c?ot´e de l?Atlantique, et il s?est r´ev´el´e su_samment int´eressant pour qu?aujourd?hui il ait franchi bien des fronti`eres, celles de l?alg`ebre y compris. Mais de quoi s?agit-il ? Si vous entendez le terme "endo-permutation" probablement pour la premi`ere fois, ce n?est certainement pas le cas pour celui de "module". Cependant, sa d´efinition dans le pr´esent contexte ne co¨ýncide avec aucune de celles figurant dans les dictionnaires ordinaires. Les personnes qui ont d´ej`a entendu parler de Frobenius, Burnside, Schur, ou encore Brauer, pourront vous dire qu?un module est une repr´esentation. "De quoi ?" vous demanderezvous. "Un spectacle de marionnettes, peut-?etre ?" Bien s?ur que non ! Un module d?endo-permutation est une repr´esentation particuli`ere de certains groupes finis, o`u un groupe n?est pas un groupe de rock, comme vous pouvez vous en douter, mais d´esigne un objet math´ematique connu par tous les ´etudiants en sciences au terme de leur premi`ere ann´ee universitaire (en th´eorie, du moins). La "popularit´e" de la notion de groupe, fini ou non, est due au fait que les groupes sont fr´equemment utilis´es, aussi bien dans le domaine abstrait des math´ematiques, que dans le monde r´eel des physiciens, chimistes et autres biologistes (pour ne citer qu?eux). "Mais comment peut-on utiliser concr`etement ces objets invisibles ?" vous demanderez-vous alors. Et bien, justement, en les consid´erant par l?interm´ediaire de leurs repr´esentations, c?est-`a-dire en leur associant des matrices, de fa¸con plus ou moins naturelle. Or, comme il y a "beaucoup trop" de matrices pour un groupe donn´e, elles sont classifi´ees selon certaines de leurs propri´et´es, ce qui permet de les r´epertorier dans diverses familles (celle des modules d?endo-permutation, par exemple). Un groupe est ainsi rendu "concret", car les donn´ees matricielles sont manipulables par tous les scienti- fiques (et leurs ordinateurs), qui peuvent alors les utiliser dans leurs recherches, afin de contribuer au progr`es de la science. En toute franchise, c?est bien loin de ces soucis terre-`a-terre que ce travail de th`ese sur la classification des modules d?endo-permutation a ´et´e accompli. En fait, quitte `a choquer certaines ?ames sensibles, sa r´ealisation est surtout due au caract`ere ´epicure de son auteur, qui, avouons-le, en a ´et´e pleinement satisfait !
Resumo:
La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature.
Resumo:
Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally.
Resumo:
Based only on the parallel-transport condition, we present a general method to compute Abelian or non-Abelian geometric phases acquired by the basis states of pure or mixed density operators, which also holds for nonadiabatic and noncyclic evolution. Two interesting features of the non-Abelian geometric phase obtained by our method stand out: i) it is a generalization of Wilczek and Zee`s non-Abelian holonomy, in that it describes nonadiabatic evolution where the basis states are parallelly transported between distinct degenerate subspaces, and ii) the non-Abelian character of our geometric phase relies on the transitional evolution of the basis states, even in the nondegenerate case. We apply our formalism to a two-level system evolving nonadiabatically under spontaneous decay to emphasize the non- Abelian nature of the geometric phase induced by the reservoir. We also show, through the generalized invariant theory, that our general approach encompasses previous results in the literature. Copyright (c) EPLA, 2008.
Resumo:
The aim of the present study is to reevaluate the logical thought of the English mathematician George Boole (1815 - 1864). Thus, our research centers on the mathematical analysis of logic in the context of the history of mathematics. In order to do so, we present various biographical considerations about Boole in the light of events that happened in the 19th century and their consequences for mathematical production. We briefly describe Boole's innovations in the areas of differential equations and invariant theory and undertake an analysis of Boole's logic, especially as formulated in the book The Mathematical Analysis of Logic, comparing it not only with the traditional Aristotelian logic, but also with modern symbolic logic. We conclude that Boole, as he intended, expanded logic both in terms of its content and also in terms of its methods and formal elaboration. We further conclude that his purpose was the mathematical modeling of deductive reasoning, which led him to present an innovative formalism for logic and, because the different ways it can be interpreted, a new conception of mathematics
Resumo:
We construct an infinite number of exact time dependent soliton solutions, carrying non-trivial Hopf topological charges, in a 3+1 dimensional Lorentz invariant theory with target space S2. The construction is based on an ansatz which explores the invariance of the model under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. The model is a rare example of an integrable theory in four dimensions, and the solitons may play a role in the low energy limit of gauge theories. © SISSA 2006.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Educação Matemática - IGCE