973 resultados para Mine Production Scheduling
Resumo:
This paper proposes a new multi-resource multi-stage scheduling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints have been considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times of equipment; equipment-assignment-dependent operation times of blocks; distances between each pair of blocks; due windows of blocks; material properties of blocks; swell factors of blocks; and slope requirements of blocks. It is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level. The model also provides an intelligent decision support tool to account for the availability and usage of equipment units for drilling, blasting and excavating stages.
Resumo:
A multi-resource multi-stage scheduling methodology is developed to solve short-term open-pit mine production scheduling problems as a generic multi-resource multi-stage scheduling problem. It is modelled using essential characteristics of short-term mining production operations such as drilling, sampling, blasting and excavating under the capacity constraints of mining equipment at each processing stage. Based on an extended disjunctive graph model, a shifting-bottleneck-procedure algorithm is enhanced and applied to obtain feasible short-term open-pit mine production schedules and near-optimal solutions. The proposed methodology and its solution quality are verified and validated using a real mining case study.
Resumo:
This paper proposes a new multi-resource multi-stage mine production timetabling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints are considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times; equipment-assignment-dependent operational times; etc. The model also provides the availability and usage of equipment units at multiple operational stages such as drilling, blasting and excavating stages. The problem is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level.
Resumo:
This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.
Resumo:
Investment in mining projects, like most business investment, is susceptible to risk and uncertainty. The ability to effectively identify, assess and manage risk may enable strategic investments to be sheltered and operations to perform closer to their potential. In mining, geological uncertainty is seen as the major contributor to not meeting project expectations. The need to assess and manage geological risk for project valuation and decision-making translates to the need to assess and manage risk in any pertinent parameter of open pit design and production scheduling. This is achieved by taking geological uncertainty into account in the mine optimisation process. This thesis develops methods that enable geological uncertainty to be effectively modelled and the resulting risk in long-term production scheduling to be quantified and managed. One of the main accomplishments of this thesis is the development of a new, risk-based method for the optimisation of long-term production scheduling. In addition to maximising economic returns, the new method minimises the risk of deviating from production forecasts, given the understanding of the orebody. This ability represents a major advance in the risk management of open pit mining.
Resumo:
Traditionally, production scheduling has been viewed as a problem-solving task that involves a single problem - generation of a suitable schedule. This paper presents an alternative model in which individual difficulties are viewed as problems, and the task is to maintain a suitable schedule by resolving as many of these problems as possible. Decision support software is described that has facilities for defining policies to handle numerous minor problems and complete problem-solving strategies to deal with major problems. The paper then discusses the potential for this style of decision support to improve the performance of human schedulers. © 1995.
Resumo:
An Advanced Planning System (APS) offers support at all planning levels along the supply chain while observing limited resources. We consider an APS for process industries (e.g. chemical and pharmaceutical industries) consisting of the modules network design (for long–term decisions), supply network planning (for medium–term decisions), and detailed production scheduling (for short–term decisions). For each module, we outline the decision problem, discuss the specifi cs of process industries, and review state–of–the–art solution approaches. For the module detailed production scheduling, a new solution approach is proposed in the case of batch production, which can solve much larger practical problems than the methods known thus far. The new approach decomposes detailed production scheduling for batch production into batching and batch scheduling. The batching problem converts the primary requirements for products into individual batches, where the work load is to be minimized. We formulate the batching problem as a nonlinear mixed–integer program and transform it into a linear mixed–binary program of moderate size, which can be solved by standard software. The batch scheduling problem allocates the batches to scarce resources such as processing units, workers, and intermediate storage facilities, where some regular objective function like the makespan is to be minimized. The batch scheduling problem is modelled as a resource–constrained project scheduling problem, which can be solved by an efficient truncated branch–and–bound algorithm developed recently. The performance of the new solution procedures for batching and batch scheduling is demonstrated by solving several instances of a case study from process industries.