971 resultados para Microscopia confocal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To investigate the utility of using non-contact laser-scanning confocal microscopy (NC-LSCM), compared with the more conventional contact laser-scanning confocal microscopy (C-LSCM), for examining corneal substructures in vivo. METHODS An attempt was made to capture representative images from the tear film and all layers of the cornea of a healthy, 35 year old female, using both NC-LSCM and C-LSCM, on separate days. RESULTS Using NC-LSCM, good quality images were obtained of the tear film, stroma, and a section of endothelium, but the corneal depth of the images of these various substructures could not be ascertained. Using C-LSCM, good quality, full-field images were obtained of the epithelium, subbasal nerve plexus, stroma, and endothelium, and the corneal depth of each of the captured images could be ascertained. CONCLUSIONS NC-LSCM may find general use for clinical examination of the tear film, stroma and endothelium, with the caveat that the depth of stromal images cannot be determined when using this technique. This technique also facilitates image capture of oblique sections of multiple corneal layers. The inability to clearly and consistently image thin corneal substructures - such as the tear film, subbasal nerve plexus and endothelium - is a key limitation of NC-LSCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas-kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To assess confocal microscopy repeatability (ConfoScan3, Nidek, Italy) when assessing the morphology of the limbus, midperipheral and central cornea. Method The central, mid-peripheral and limbal cornea (temporal and nasal) of the right eye of 8 subjects were examined with a ConfoScan3 in two different visits, at least six months apart. Bland-Altman repeatability was measured for 29 parameters: basal cell density and size, anterior and posterior keratocyte densities (AKD/PKD), endothelial cell density, polymegethism, pleomorphism, mean area and sides of endothelial cells - in the five different corneal areas examined. Results As a percentage of the mean absolute values, repeatability of 0–10% was classified as “excellent”, between 10–30% as “acceptable” and over 30% as “poor”. Repeatability was excellent for 14% of parameters and acceptable for 52% of parameters. The number of endothelial cell sides in the central cornea demonstrated the best repeatability (2.0%) whilst mid-temporal PKD showed the poorest repeatability (53.7%). Conclusions Confocal microscopy is at least an adequately repeatablemethodof evaluating the various corneal layers at different locations. Our dataset supports the ongoing use of the technique in research and clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims: The assessment of intra-epidermal nerve fiber density (IENFD) in skin biopsies and corneal nerve fiber density (CNFD) using corneal confocal microscopy (CCM) provides promising techniques to detect small nerve fiber damage in patients with peripheral neuropathy. To help define the clinical utility of each of these techniques in patients with diabetic neuropathy we have assessed sensitivity and specificity of IENFD and CNFD in predicting the following: 1) diabetic polyneuropathy (DPN); 2) risk of foot ulceration (RFU); 3) initial small fiber neuropathy (iSFN); 4) severe small fiber neuropathy (sSFN)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose We examined the age-dependent alterations and longitudinal course of subbasal nerve plexus (SNP) morphology in healthy individuals. Methods Laser-scanning corneal confocal microscopy, ocular screening, and health and metabolic assessment were performed on 64 healthy participants at baseline and at 12-month intervals for 3 years. At each annual visit, eight central corneal images of the SNP were selected and analyzed using a fully-automated analysis system to quantify corneal nerve fiber length (CNFL). Two linear mixed model approaches were fitted to examine the relationship between age and CNFL, and the longitudinal changes of CNFL over three years. Results At baseline, mean age was 51.9 ± 14.7 years. The cohort was sex balanced (χ2 = 0.56, P = 0.45). Age (t = 1.6, P = 0.12) and CNFL (t = -0.50, P = 0.62) did not differ between sexes. A total of 52 participants completed the 36-month visit and 49 participants completed all visits. Age had a significant effect on CNFL (F1,33 = 5.67, P = 0.02) with a linear decrease of 0.05 mm/mm2 in CNFL per one year increase in age. No significant change in CNFL was observed over the 36-month period (F1,55 = 0.69, P = 0.41). Conclusions The CNFL showed a stable course over a 36-month period in healthy individuals, although there was a slight linear reduction in CNFL with age. The findings of this study have implications for understanding the time-course of the effect of pathology and surgical or therapeutic interventions on the morphology of the SNP, and serves to confirm the suitability of CNFL as a screening/monitoring marker for peripheral neuropathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The palette of fluorescent proteins (FPs) has grown exponentially over the past decade, and as a result, live imaging of cells expressing fluorescently tagged proteins is becoming more and more mainstream. Spinning disk confocal (SDC) microscopy is a high-speed optical sectioning technique and a method of choice to observe and analyze intracellular FP dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low-noise scientific grade-cooled charge-coupled device cameras, and can achieve frame rates of up to 1000 frames per second. In this chapter, we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy and provide a rationale for specific design choices. We also give guidelines of how other imaging techniques such as total internal reflection microscopy or spatially controlled photoactivation can be coupled with SDC imaging and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improved glycemic control is the only treatment that has been shown to be effective for diabetic peripheral neuropathy in patients with type 1 diabetes (1). Continuous subcutaneous insulin infusion (CSII) is superior to multiple daily insulin injection (MDI) for reducing HbA1c and hypoglycemic events (2). Here, we have compared the benefits of CSII compared withMDI for neuropathy over 24months....

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Corneal confocal microscopy is a novel diagnostic technique for the detection of nerve damage and repair in a range of peripheral neuropathies, in particular diabetic neuropathy. Normative reference values are required to enable clinical translation and wider use of this technique. We have therefore undertaken a multicenter collaboration to provide worldwide age-adjusted normative values of corneal nerve fiber parameters. RESEARCH DESIGN AND METHODS A total of 1,965 corneal nerve images from 343 healthy volunteers were pooled from six clinical academic centers. All subjects underwent examination with the Heidelberg Retina Tomograph corneal confocal microscope. Images of the central corneal subbasal nerve plexus were acquired by each center using a standard protocol and analyzed by three trained examiners using manual tracing and semiautomated software (CCMetrics). Age trends were established using simple linear regression, and normative corneal nerve fiber density (CNFD), corneal nerve fiber branch density (CNBD), corneal nerve fiber length (CNFL), and corneal nerve fiber tortuosity (CNFT) reference values were calculated using quantile regression analysis. RESULTS There was a significant linear age-dependent decrease in CNFD (-0.164 no./mm(2) per year for men, P < 0.01, and -0.161 no./mm(2) per year for women, P < 0.01). There was no change with age in CNBD (0.192 no./mm(2) per year for men, P = 0.26, and -0.050 no./mm(2) per year for women, P = 0.78). CNFL decreased in men (-0.045 mm/mm(2) per year, P = 0.07) and women (-0.060 mm/mm(2) per year, P = 0.02). CNFT increased with age in men (0.044 per year, P < 0.01) and women (0.046 per year, P < 0.01). Height, weight, and BMI did not influence the 5th percentile normative values for any corneal nerve parameter. CONCLUSIONS This study provides robust worldwide normative reference values for corneal nerve parameters to be used in research and clinical practice in the study of diabetic and other peripheral neuropathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE This study determined if deficits in corneal nerve fiber length (CNFL) assessed using corneal confocal microscopy (CCM) can predict future onset of diabetic peripheral neuropathy (DPN). RESEARCH DESIGN AND METHODS CNFL and a range of other baseline measures were compared between 90 nonneuropathic patients with type 1 diabetes who did or did not develop DPN after 4 years. The receiver operator characteristic (ROC) curve was used to determine the capability of single and combined measures of neuropathy to predict DPN. RESULTS DPN developed in 16 participants (18%) after 4 years. Factors predictive of 4-year incident DPN were lower CNFL (P = 0.041); longer duration of diabetes (P = 0.002); higher triglycerides (P = 0.023); retinopathy (higher on the Early Treatment of Diabetic Retinopathy Study scale) (P = 0.008); nephropathy (higher albumin-to-creatinine ratio) (P = 0.001); higher neuropathy disability score (P = 0.037); lower cold sensation (P = 0.001) and cold pain (P = 0.027) thresholds; higher warm sensation (P = 0.008), warm pain (P = 0.024), and vibration (P = 0.003) thresholds; impaired monofilament response (P = 0.003); and slower peroneal (P = 0.013) and sural (P = 0.002) nerve conduction velocity. CCM could predict the 4-year incident DPN with 63% sensitivity and 74% specificity for a CNFL threshold cutoff of 14.1 mm/mm2 (area under ROC curve = 0.66, P = 0.041). Combining neuropathy measures did not improve predictive capability. CONCLUSIONS DPN can be predicted by various demographic, metabolic, and conventional neuropathy measures. The ability of CCM to predict DPN broadens the already impressive diagnostic capabilities of this novel ophthalmic marker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The aim of this study was to determine alterations to the corneal subbasal nerve plexus (SNP) over four years using in vivo corneal confocal microscopy (IVCM) in participants with type 1 diabetes and to identify significant risk factors associated with these alterations. Methods A cohort of 108 individuals with type 1 diabetes and no evidence of peripheral neuropathy at enrollment underwent laser-scanning IVCM, ocular screening, and health and metabolic assessment at baseline and the examinations continued for four subsequent annual visits. At each annual visit, eight central corneal images of the SNP were selected and analyzed to quantify corneal nerve fiber density (CNFD), branch density (CNBD) and fiber length (CNFL). Linear mixed model approaches were fitted to examine the relationship between risk factors and corneal nerve parameters. Results A total of 96 participants completed the final visit and 91 participants completed all visits. No significant relationships were found between corneal nerve parameters and time, sex, duration of diabetes, smoking, alcohol consumption, blood pressure or BMI. However, CNFD was negatively associated with HbA1c (β=-0.76, P<0.01) and age (β=-0.13, P<0.01) and positively related to high density lipids (HDL) (β=2.01, P=0.03). Higher HbA1c (β=-1.58, P=0.04) and age (β=-0.23, P<0.01) also negatively impacted CNBD. CNFL was only affected by higher age (β=-0.06, P<0.01). Conclusions Glycemic control, HDL and age have significant effects on SNP structure. These findings highlight the importance of diabetic management to prevent corneal nerve damage as well as the capability of IVCM for monitoring subclinical alterations in the corneal SNP in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Corneal innervation is increasingly used as a surrogate marker of human diabetic peripheral neuropathy (DPN) however its temporal relationship with the other microvascular complications of diabetes is not fully established. In this cross-sectional, observational study we aimed to assess whether neuropathy occurred in patients with type 1 diabetes, without retinopathy or microalbuminuria. Materials and Methods All participants underwent detailed assessment of peripheral neuropathy [neuropathy disability score (NDS), vibration perception threshold (VPT), peroneal motor nerve conduction velocity (PMNCV), sural sensory nerve conduction velocity (SSNCV) and in vivo corneal confocal microscopy (IVCCM)], retinopathy (digital fundus photography) and albuminuria status [albumin: creatinine ratio (ACR)]. Results 53 patients with Type 1 diabetes with (n=37) and without retinopathy (n=16) were compared to control subjects (n=27). SSNCV, corneal nerve fibre (CNFD) and branch (CNBD) density and length (CNFL) were reduced significantly (p<0.001) in diabetic patients without retinopathy compared to control subjects. Furthermore, CNFD, CNBD and CNFL were also significantly (p<0.001) reduced in diabetic patients without microalbuminuria (n=39), compared to control subjects. Greater neuropathic severity was associated with established retinopathy and microalbuminuria. Conclusions IVCCM detects early small fibre damage in the absence of retinopathy or microalbuminuria in patients with Type 1 diabetes.