991 resultados para Methyl groups


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the title squaraine dye solvate, C26H24N2O2·2CHCl3, the dye molecule is essentially planar, except for the methyl groups, having a maximum deviation over the 26-membered delocalized bond system of 0.060 (2) Å. It possesses crystallographic twofold rotational symmetry with the indole ring systems adopting a syn conformation. The molecular structure features intramolecular N-HO hydrogen bonds enclosing conjoint S7 ring motifs about one of the dioxocyclobutene O atoms, while the two chloroform solvent molecules are linked to the second O atom through C-HO hydrogen bonds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The kinetics of acid-catalyzed hydrolysis of seven methylated aliphatic epoxides - R1R2C(O)CR3R4 (A: R1=R2=R3=R4=H; B: R1=R2=R3=H, R4=Me; C: R1=R2=H, R3=R4=Me; D: R1=R3=H, R2=R4=Me(trans); E: R1=R3=H, R2=R4=Me(cis); F: R1=R3=R4=Me, R2=H; G: R1=R2=R3=R4=Me) - has been studied at 36 ± 1.5°C. Compounds with two methyl groups at the same carbon atom of the oxirane ring exhibit highest rate constants (k(eff) in reciprocal molar concentration per second: 11.0 ± 1.3 for C, 10.7 ± 2.1 for F, and 8.7 ± 0.7 for G as opposed to 0.124 ± 0.003 for B, 0.305 ± 0.003 for D, and 0.635 ± 0.036 for E). Ethylene oxide (A) displays the lowest rate of hydrolysis (0.027 M-1 s-1). The results are consistent with literature data available for compounds A, B, and C. To model the reactivities we have employed quantum chemical calculations (MNDO, AM1, PM3, and MINDO/3) of the main reaction species. There is a correlation of the logarithm k(eff) with the total energy of epoxide ring opening. The best correlation coefficients (r) were obtained using the AM1 and MNDO methods (0.966 and 0.957, respectively). However, unlike MNDO, AM1 predicts approximately zero energy barriers for the oxirane ring opening of compounds B, C, E and G, which is not consistent with published kinetic data. Thus, the MNDO method provides a preferential means of modeling the acidic hydrolysis of the series of methylated oxiranes. The general ranking of mutagenicity in vitro, A > B > C, is in line with the concept that this sequence also gradually leaves the expoxide reactivity optimal for genotoxicity toward reactivities leading to higher biological detoxifications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Use of chloro and methyl substitution in crystal engineering and their interchangeability in terms of mode of packing have been examined in a series of substituted coumarins. Photoreactivity in the solid state lists been correlated with the crystallograhic structures of these coumarins. The packing of chloro-substituted aromatic compounds has been investigated by analysing the arrangement of 132 compounds. Results substantiate the use of the chloro group as a steering agent and show that the chloro and methyl groups are not always interchangeable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of C-13 and H-1 chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their C-13 chemical shifts with that of the neighboring, directly attached, C-13 nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D H-1-TOCSY-HCCH and (c) (4,3)D C-13-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New C-13-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the C-13-methyl nucleus and its directly attached C-13 spin in a molecule. In proteins such correlations edit the C-13-resonances of different methyl containing residues into distinct spectral regions yielding a high resolution spectrum. This has a range of applications as exemplified for different systems such as large proteins, intrinsically disordered polypeptides and proteins with a paramagnetic centre.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2-Carboxy-2?-methyldiphenyl sulfide was prepared by the Ullmann reaction and cyclodehydrated by sulfuric acid to afford 4-methylthioxanthone. 1-Methylthioxanthone was separated from the reaction mixture obtained upon cyclodehydration of 2-carboxy-3f-methyldiphenyl sulfide. In addition, 1-, 2-, 3- and 4-methylthioxanthone 10,10-dioxides were synthesized by oxidation of the corresponding thioxanthones. o-, m- and p-N-Tolylanthranilic acids were prepared by the Ullmann reaction and used as precursors for the preparation of 1-, 2- and 4- methyl-9-chloroacridine and finally 1-, 2-, 3- and 4-methylacridone. High resolution, 60 MHz PMR spectra were obtained on the four monomethyl isomers of xanthone, thioxanthone, thioxanthone 10,10-dioxide and acridone, and on 1-, 2- and 4-methyl-9-chloroacridine. For some compounds, coupling of all three different aromatic protons to the methyl was observed, two of the couplings typically being smaller than the third. With the large (ortho) coupling being on the order of 0.5 to 1.0 Hz, it was necessary to decouple the aromatic part of the spectrum. The magnitude of the ortho benzylic constant may be related to an incomplete Tr-bond delocalization in the molecules.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetaldehyde CH3CHS, CH3CDS, CD3CHS and CD3CDS have been observed over the region 15800 - 17300 cm"^ in a continuous pyrolysis jet. The vibronic band structure of the singlet-triplet n -* n* transition were attributed to the strong coupling of the methyl torsion and aldehydic hydrogen wagging modes . The vibronic peaks have been assigned in terms of two upper electronic state (T^) vibrations; the methyl torsion mode v^g, and the aldehydic hydrogen wagging mode v^^. The electronic origin O^a^ is unequivocally assigned as follows: CH3CHS (16294.9 cm"'' ), CH3CDS (16360.9 cm"'' ), CD3CHS (16299.7 cm"^ ), and CD3CDS (16367.2 cm"'' ). To obtain structural and dynamical information about the two electronic states, potential surfaces V(e,a) for the 6 (methyl torsion) and a (hydrogen wagging) motions were generated by ab initio quantum mechanical calculations with a 6-3 IG* basis in which the structural parameters were fully relaxed. The kinetic energy coefficients BQ(a,e) , B^(a,G) , and the cross coupling term B^(a,e) , were accurately represented as functions of the two active coordinates, a and 9. The calculations reveal that the molecule adopts an eclipsed conformation for the lower Sq electronic state (a=0°,e=0"') with a barrier height to internal rotation of 541.5 cm"^ which is to be compared to 549.8 cm"^ obtained from the microwave experiment. The conformation of the upper T^ electronic state was found to be staggered (a=24 . 68° ,e=-45. 66° ) . The saddle point in the path traced out by the aldehyde wagging motion was calculated to be 175 cm"^ above the equilibrium configuration. The corresponding maxima in the path taken by methyl torsion was found to be 322 cm'\ The small amplitude normal vibrational modes were also calculated to aid in the assignment of the spectra. Torsional-wagging energy manifolds for the two states were derived from the Hamiltonian H(a,e) which was solved variationally using an extended two dimensional Fourier expansion as a basis set. A torsionalinversion band spectrum was derived from the calculated energy levels and Franck-Condon factors, and was compared with the experimental supersonic-jet spectra. Most of the anomalies which were associated with the interpretation of the observed spectrum could be accounted for by the band profiles derived from ab initio SCF calculations. A model describing the jet spectra was derived by scaling the ab initio potential functions. The global least squares fitting generates a triplet state potential which has a minimum at (a=22.38° ,e=-41.08°) . The flatter potential in the scaled model yielded excellent agreement between the observed and calculated frequency intervals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ABSTRACT: Polypyridyl ruthenium complexes have been intensively studied and possess photophysical properties which are both interesting and useful. They can act as probes for DNA, with a substantial enhancement in emission when bound, and can induce DNA damage upon photoirradiation and therefore, the synthesis and characterization of DNA binding of new complexes is an area of intense research activity. Whilst knowledge of how the binding of derivatives compares to the parent compound is highly desirable, this information can be difficult to obtain. Here we report the synthesis of three new methylated complexes, [Ru(TAP)2(dppz-10-Me).2Cl, [Ru(TAP)2(dppz-10,12-Me2)].2Cl and [Ru(TAP)2(dppz-11-Me)].2Cl, and examine the consequences for DNA binding through the use of atomic resolution X-ray crystallography. We find that the methyl groups are located in discrete positions with a complete directional preference. This may help to explain the quenching behavior which is found in solution for analogous [Ru(phen)2(dppz)]2+ derivatives.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have cloned the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene. The sterol methyl oxidase performs the first of three enzymic steps required to remove the two C-4 methyl groups leading to cholesterol (animal), ergosterol (fungal), and stigmasterol (plant) biosynthesis. An ergosterol auxotroph, erg25, which fails to demethylate and concomitantly accumulates 4,4-dimethylzy-mosterol, was isolated after mutagenesis. A complementing clone consisting of a 1.35-kb Dra I fragment encoded a 309-amino acid polypeptide (calculated molecular mass, 36.48 kDa). The amino acid sequence shows a C-terminal endoplasmic reticulum retrieval signal KKXX and three histidine-rich clusters found in eukaryotic membrane desaturases and in a bacterial alkane hydroxylase and xylene monooxygenase. The sterol profile of an ERG25 disruptant was consistent with the erg25 allele obtained by mutagenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A range of novel tetramethyl- and tetraethylisoindolinenitroxides, possessing aryl-linked carboxylic acids, amines, alcohols and phosphonic acids were prepared. Notably, the chemistry established for the aromatic dibromination of the tetramethylisoindolines was not easily transferred to the corresponding tetraethylisoindoline system. Instead, various tetraethylisoindoline analogues were accessed by the oxidation of methyl groups attached to the aromatic ring to give the carboxylic acids. The increased steric bulk of the tetraethyl structures should limit bio-reduction and these compounds may have potential as antioxidants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infrared spectroscopy has been used to study the adsorption of paranitrophenol on mono, di and tri alkyl surfactant intercalated montmorillonite. Organoclays were obtained by the cationic exchange of mono, di and tri alkyl chain surfactants for sodium ions [hexadecyltrimethylammonium bromide (HDTMAB), dimethyldioctadecylammonium bromide (DDOAB), methyltrioctadecylammonium bromide (MTOAB)] in an aqueous solution with Na-montmorillonite. Upon formation of the organoclay, the properties change from strongly hydrophilic to strongly hydrophobic. This change in surface properties is observed by a decrease in intensity of the OH stretching vibrations assigned to water in the cation hydration sphere of the montmorillonite. As the cation is replaced by the surfactant molecules the paranitrophenol replaces the surfactant molecules in the clay interlayer. Bands attributed to CH stretching and bending vibrations change for the surfactant intercalated montmorillonite. Strong changes occur in the HCH deformation modes of the methyl groups of the surfactant. These changes are attributed to the methyl groups locking into the siloxane surface of the montmorillonite. Such a concept is supported by changes in the SiO stretching bands of the montmorillonite siloxane surface. This study demonstrates that paranitrophenol will penetrate into the untreated clay interlayer and replace the intercalated surfactant in surfactant modified clay, resulting in the change of the arrangement of the intercalated surfactant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RNA-dependent RNA polymerase (RDR) activities were readily detected in extracts from cauliflower and broccoli florets, Arabidopsis thaliana (L.) Heynh callus tissue and broccoli nuclei. The synthesis of complementary RNA (cRNA) was independent of a RNA primer, whether or not the primer contained a 3′ terminal 2′-O-methyl group or was phosphorylated at the 5′ terminus. cRNA synthesis in plant extracts was not affected by loss-of-function mutations in the DICER-LIKE (DCL) proteins DCL2, DCL3, and DCL4, indicating that RDRs function independently of these DCL proteins. A loss-of-function mutation in RDR1, RDR2 or RDR6 did not significantly reduce the amount of cRNA synthesis. This indicates that these RDRs did not account for the bulk RDR activities in plant extracts, and suggest that either the individual RDRs each contribute a fraction of polymerase activity or another RDR(s) is predominant in the plant extract. © CSIRO 2008.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Internal motions in a A2BX4 compound (tetramethylammonium tetrabromo cadmate) have been investigated using proton spin—lattice relaxation time (T1) and second moment (M2) measurements in the temperature range 77 to 400 K. T1 measurements at three Larmor frequencies (10, 20 and 30 MHz) show isotropic tumbling of the tetramethylammonium group, random reorientation of methyl groups and spin—rotation interaction, and the corresponding parameters have been computed. The cw spectrum is narrow throughout the temperature range and shows side bands at the lowest temperature. This observation, along with the free-induction-decay behavior at these temperatures, is interpreted as the onset of a coherent motion, e.g. methyl group quantum tunnelling.