883 resultados para Mean Curvature Equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our goal in this thesis is to provide a result of existence of the degenerate non-linear, non-divergence PDE which describes the mean curvature flow in the Lie group SE(2) equipped with a sub-Riemannian metric. The research is motivated by problems of visual completion and models of the visual cortex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since dilute Bose gas condensates were first experimentally produced, the Gross-Pitaevskii equation has been successfully used as a descriptive tool. As a mean-field equation, it cannot by definition predict anything about the many-body quantum statistics of condensate. We show here that there are a class of dynamical systems where it cannot even make successful predictions about the mean-field behavior, starting with the process of evaporative cooling by which condensates are formed. Among others are parametric processes, such as photoassociation and dissociation of atomic and molecular condensates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a kinetic model for transformations between different self-assembled lipid structures. The model shows how data on the rates of phase transitions between mesophases of different geometries can be used to provide information on the mechanisms of the transformations and the transition states involved. This can be used, for example, to gain an insight into intermediate structures in cell membrane fission or fusion. In cases where the monolayer curvature changes on going from the initial to the final mesophase, we consider the phase transition to be driven primarily by the change in the relaxed curvature with pressure or temperature, which alters the relative curvature elastic energies of the two mesophase structures. Using this model, we have analyzed previously published kinetic data on the inter-conversion of inverse bicontinuous cubic phases in the 1-monoolein-30 wt% water system. The data are for a transition between QII(G) and QII(D) phases, and our analysis indicates that the transition state more closely resembles the QII(D) than the QII(G) phase. Using estimated values for the monolayer mean curvatures of the QII(G) and QII(D) phases of -0.123 nm(-1) and -0.133 nm(-1), respectively, gives values for the monolayer mean curvature of the transition state of between -0.131 nm(-1) and -0.132 nm(-1). Furthermore, we estimate that several thousand molecules undergo the phase transition cooperatively within one "cooperative unit", equivalent to 1-2 unit cells of QII(G) or 4-10 unit cells of QII(D).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A parameterization of mesoscale eddies in coarse-resolution ocean general circulation models (GCM) is formulated and implemented using a residual-mean formalism. In that framework, mean buoyancy is advected by the residual velocity (the sum of the Eulerian and eddy-induced velocities) and modified by a residual flux which accounts for the diabatic effects of mesoscale eddies. The residual velocity is obtained by stepping forward a residual-mean momentum equation in which eddy stresses appear as forcing terms. Study of the spatial distribution of eddy stresses, derived by using them as control parameters to ‘‘fit’’ the residual-mean model to observations, supports the idea that eddy stresses can be likened to a vertical down-gradient flux of momentum with a coefficient which is constant in the vertical. The residual eddy flux is set to zero in the ocean interior, where mesoscale eddies are assumed to be quasi-adiabatic, but is parameterized by a horizontal down-gradient diffusivity near the surface where eddies develop a diabatic component as they stir properties horizontally across steep isopycnals. The residual-mean model is implemented and tested in the MIT general circulation model. It is shown that the resulting model (1) has a climatology that is superior to that obtained using the Gent and McWilliams parameterization scheme with a spatially uniform diffusivity and (2) allows one to significantly reduce the (spurious) horizontal viscosity used in coarse resolution GCMs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we give a partially affirmative answer to the following question posed by Haizhong Li: is a complete spacelike hypersurface in De Sitter space S(1)(n+1)(c), n >= 3, with constant normalized scalar curvature R satisfying n-2/nc <= R <= c totally umbilical? (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We give estimates of the intrinsic and the extrinsic curvature of manifolds that are isometrically immersed as cylindrically bounded submanifolds of warped products. We also address extensions of the results in the case of submanifolds of the total space of a Riemannian submersion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nesta dissertação apresentamos e desenvolvemos o Método de Perron, fazendo uma aplicação ao ploblema de Dirichlet para a equação das superfícies de curvatura média constante em R3. Apresentamos também uma extensão deste método dentro de EDP's e, por fim, obtemos uma extensão geométrica que se aplica a superfícies ao invés de gráficos. Comentamos a aplicação deste método geométrico á existência de superfícies mínimas tendo como bordo duas curvas convexas em planos paralelos do R3.