949 resultados para Maximal Compact Frames
Resumo:
One can do research in pointfree topology in two ways. The rst is the contravariant way where research is done in the category Frm but the ultimate objective is to obtain results in Loc. The other way is the covariant way to carry out research in the category Loc itself directly. According to Johnstone [23], \frame theory is lattice theory applied to topology whereas locale theory is topology itself". The most part of this thesis is written according to the rst view. In this thesis, we make an attempt to study about 1. the frame counterparts of maximal compactness, minimal Hausdor - ness and reversibility, 2. the automorphism groups of a nite frame and its relation with the subgroups of the permutation group on the generator set of the frame
Resumo:
Let G be a reductive complex Lie group acting holomorphically on normal Stein spaces X and Y, which are locally G-biholomorphic over a common categorical quotient Q. When is there a global G-biholomorphism X → Y? If the actions of G on X and Y are what we, with justification, call generic, we prove that the obstruction to solving this local-to-global problem is topological and provide sufficient conditions for it to vanish. Our main tool is the equivariant version of Grauert's Oka principle due to Heinzner and Kutzschebauch. We prove that X and Y are G-biholomorphic if X is K-contractible, where K is a maximal compact subgroup of G, or if X and Y are smooth and there is a G-diffeomorphism ψ : X → Y over Q, which is holomorphic when restricted to each fibre of the quotient map X → Q. We prove a similar theorem when ψ is only a G-homeomorphism, but with an assumption about its action on G-finite functions. When G is abelian, we obtain stronger theorems. Our results can be interpreted as instances of the Oka principle for sections of the sheaf of G-biholomorphisms from X to Y over Q. This sheaf can be badly singular, even for a low-dimensional representation of SL2(ℂ). Our work is in part motivated by the linearisation problem for actions on ℂn. It follows from one of our main results that a holomorphic G-action on ℂn, which is locally G-biholomorphic over a common quotient to a generic linear action, is linearisable.
Resumo:
In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This report aims at giving a general overview on the classification of the maximal subgroups of compact Lie groups (not necessarily connected). In the first part, it is shown that these fall naturally into three types: (1) those of trivial type, which are simply defined as inverse images of maximal subgroups of the corresponding component group under the canonical projection and whose classification constitutes a problem in finite group theory, (2) those of normal type, whose connected one-component is a normal subgroup, and (3) those of normalizer type, which are the normalizers of their own connected one-component. It is also shown how to reduce the classification of maximal subgroups of the last two types to: (2) the classification of the finite maximal Sigma-invariant subgroups of centerfree connected compact simple Lie groups and (3) the classification of the Sigma-primitive subalgebras of compact simple Lie algebras, where Sigma is a subgroup of the corresponding outer automorphism group. In the second part, we explicitly compute the normalizers of the primitive subalgebras of the compact classical Lie algebras (in the corresponding classical groups), thus arriving at the complete classification of all (non-discrete) maximal subgroups of the compact classical Lie groups.
Resumo:
Given a compact 2 dimensional manifold M we classify all continuous flows phi without wandering points on M. This classification is performed by finding finitely many pairwise disjoint open phi-invariant subsets {U(1), U(2), ..., U(n)} of M such that U(i=1)(n) (U(i)) over bar = M and each U(i) is either a suspension of an interval exchange transformation, or a maximal open cylinder made up of closed trajectories of phi.
Resumo:
We study Hardy spaces on the boundary of a smooth open subset or R-n and prove that they can be defined either through the intrinsic maximal function or through Poisson integrals, yielding identical spaces. This extends to any smooth open subset of R-n results already known for the unit ball. As an application, a characterization of the weak boundary values of functions that belong to holomorphic Hardy spaces is given, which implies an F. and M. Riesz type theorem. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper a space X is pseudocompact if it is Tychonoff and every real-valued continuous function on X is bounded. We obtain conditions under which a Tychonoff space is maximal pseudocompact and study conditions under which a regular space is maximal R-closed.
Resumo:
A uniform algebra A on its Shilov boundary X is maximal if A is not C(X) and no uniform algebra is strictly contained between A and C(X) . It is essentially pervasive if A is dense in C(F) whenever F is a proper closed subset of the essential set of A. If A is maximal, then it is essentially pervasive and proper. We explore the gap between these two concepts. We show: (1) If A is pervasive and proper, and has a nonconstant unimodular element, then A contains an infinite descending chain of pervasive subalgebras on X . (2) It is possible to find a compact Hausdorff space X such that there is an isomorphic copy of the lattice of all subsets of N in the family of pervasive subalgebras of C(X). (3) In the other direction, if A is strongly logmodular, proper and pervasive, then it is maximal. (4) This fails if the word “strongly” is removed. We discuss examples involving Dirichlet algebras, A(U) algebras, Douglas algebras, and subalgebras of H∞(D), and develop new results that relate pervasiveness, maximality, and relative maximality to support sets of representing measures.
Resumo:
Владимир Тодоров - Нека X е компактно метрично пространство с dim X = n. Тогава за n − 1 - мерния диаметър dn−1(X) на X е изпълнено неравенството dn−1(X) > 0, докато dn(X) = 0 (да отбележим, че това е една от характеристиките на размерността на Лебег). От тук се получава, че X съдържа минимално по включване затворено подмножество Y , за което dn−1(Y ) = dn−1(X). Известен резултат е, че от това следва, че Y е Канторово Многообразие. В тази бележка доказваме, че всяко такова (минимално) подпространство Y е даже континуум V^n. Получени са също така някои следствия.
Resumo:
A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.
Resumo:
To investigate the effects of a specific protocol of undulatory physical resistance training on maximal strength gains in elderly type 2 diabetics. The study included 48 subjects, aged between 60 and 85 years, of both genders. They were divided into two groups: Untrained Diabetic Elderly (n=19) with those who were not subjected to physical training and Trained Diabetic Elderly (n=29), with those who were subjected to undulatory physical resistance training. The participants were evaluated with several types of resistance training's equipment before and after training protocol, by test of one maximal repetition. The subjects were trained on undulatory resistance three times per week for a period of 16 weeks. The overload used in undulatory resistance training was equivalent to 50% of one maximal repetition and 70% of one maximal repetition, alternating weekly. Statistical analysis revealed significant differences (p<0.05) between pre-test and post-test over a period of 16 weeks. The average gains in strength were 43.20% (knee extension), 65.00% (knee flexion), 27.80% (supine sitting machine), 31.00% (rowing sitting), 43.90% (biceps pulley), and 21.10% (triceps pulley). Undulatory resistance training used with weekly different overloads was effective to provide significant gains in maximum strength in elderly type 2 diabetic individuals.
Resumo:
The main aim of this investigation was to verify the relationship of the variables measured during a 3-minute all-out test with aerobic (i.e., peak oxygen uptake [(Equation is included in full-text article.)] and intensity corresponding to the lactate minimum [LMI]) and anaerobic parameters (i.e., anaerobic work) measured during a 400-m maximal performance. To measure force continually and to avoid the possible influences caused by turns, the 3-minute all-out effort was performed in tethered swimming. Thirty swimmers performed the following tests: (a) a 3-minute all-out tethered swimming test to determine the final force (equivalent to critical force: CF3-MIN) and the work performed above CF3-MIN (W'3-MIN), (b) a LMI protocol to determine the LMI during front crawl swimming, and (c) a 400-m maximal test to determine the (Equation is included in full-text article.)and total anaerobic contribution (WANA). Correlations between the variables were tested using the Pearson's correlation test (p ≤ 0.05). CF3-MIN (73.9 ± 13.2 N) presented a high correlation with the LMI (1.33 ± 0.08 m·s; p = 0.01) and (Equation is included in full-text article.)(4.5 ± 1.2 L·min; p = 0.01). However, the W'3-MIN (1,943.2 ± 719.2 N·s) was only moderately correlated with LMI (p = 0.02) and (Equation is included in full-text article.)(p = 0.01). In summary, CF3-MIN determined during the 3-minute all-out effort is associated with oxidative metabolism and can be used to estimate the aerobic capacity of swimmers. In contrast, the anaerobic component of this model (W'3-MIN) is not correlated with WANA.
Resumo:
This study sought to analyse the behaviour of the average spinal posture using a novel investigative procedure in a maximal incremental effort test performed on a treadmill. Spine motion was collected via stereo-photogrammetric analysis in thirteen amateur athletes. At each time percentage of the gait cycle, the reconstructed spine points were projected onto the sagittal and frontal planes of the trunk. On each plane, a polynomial was fitted to the data, and the two-dimensional geometric curvature along the longitudinal axis of the trunk was calculated to quantify the geometric shape of the spine. The average posture presented at the gait cycle defined the spine Neutral Curve. This method enabled the lateral deviations, lordosis, and kyphosis of the spine to be quantified noninvasively and in detail. The similarity between each two volunteers was a maximum of 19% on the sagittal plane and 13% on the frontal (p<0.01). The data collected in this study can be considered preliminary evidence that there are subject-specific characteristics in spinal curvatures during running. Changes induced by increases in speed were not sufficient for the Neutral Curve to lose its individual characteristics, instead behaving like a postural signature. The data showed the descriptive capability of a new method to analyse spinal postures during locomotion; however, additional studies, and with larger sample sizes, are necessary for extracting more general information from this novel methodology.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
This study aimed to compare maximal fat oxidation rate parameters between moderate-and low-performance runners. Eighteen runners performed an incremental treadmill test to estimate individual maximal fat oxidation rate (Fat(max)) based on gases measures and a 10,000-m run on a track. The subjects were then divided into a low and moderate performance group using two different criteria: 10,000-m time and VO(2)max values. When groups were divided using 10,000-m time, there was no significant difference in Fat(max) (0.41 +/- 0.16 and 0.27 +/- 0.12 g.min(-1), p = 0.07) or in the exercise intensity that elicited Fat(max) (59.9 +/- 16.5 and 68.7 +/- 10.3 % (V) over dotO(2max), p = 0.23) between the moderate and low performance groups, respectively (p > 0.05). When groups were divided using VO(2max) values, Fat(max) was significantly lower in the low VO(2max) group than in the high VO(2max) group (0.29 +/- 0.10 and 0.47 +/- 0.17 g.min(-1), respectively, p < 0.05) but the intensity that elicited Fat(max) did not differ between groups (64.4 +/- 14.9 and 61.6 +/- 15.4 % VO(2max)). Fat(max) or % VO(2max) that elicited Fat(max) was not associated with 10,000 m time. The only variable associated with 10,000-m running performance was % VO(2max) used during the run (p < 0.01). In conclusion, the criteria used for the division of groups according to training status might influence the identification of differences in Fat(max) or in the intensity that elicits Fat(max).