973 resultados para Max-weight function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a bent function f (x) of n variables, its max-weight and min-weight functions are introduced as the Boolean functions f + (x) and f − (x) whose supports are the sets {a ∈ Fn2 | w( f ⊕la) = 2n−1+2 n 2 −1} and {a ∈ Fn2 | w( f ⊕la) = 2n−1−2 n 2 −1} respectively, where w( f ⊕ la) denotes the Hamming weight of the Boolean function f (x) ⊕ la(x) and la(x) is the linear function defined by a ∈ Fn2 . f + (x) and f − (x) are proved to be bent functions. Furthermore, combining the 4 minterms of 2 variables with the max-weight or min-weight functions of a 4-tuple ( f0(x), f1(x), f2(x), f3(x)) of bent functions of n variables such that f0(x) ⊕ f1(x) ⊕ f2(x) ⊕ f3(x) = 1, a bent function of n + 2 variables is obtained. A family of 4-tuples of bent functions satisfying the above condition is introduced, and finally, the number of bent functions we can construct using the method introduced in this paper are obtained. Also, our construction is compared with other constructions of bent functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the utility of edge cracked semicircular disk (ECSD) for rapid assessment of fracture toughness using compressive loading. Continuing our earlier work on ECSD, a theoretical examination here leads to a novel way for synthesizing weight functions using two distinct form factors. The efficacy of ECSD mode-I weight function synthesized using displacement and form factor methods is demonstrated by comparing with finite element results. Theory of elasticity in conjunction with finite element method is utilized to analyze crack opening potency of ECSD under eccentric compression to explore newer configurations of ECSD for fracture testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi-weight functions were obtained as virtual displacement and stress fields with eigenvalue-lambda. Integral expression of fracture parameters, K-I and K-II, were obtained from reciprocal work theorem with semi-weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi-weight function method is a simple, convenient and high precision calculation method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized convolution with a weight function for the Fourier cosine and sine transforms is introduced. Its properties and applications to solving a system of integral equations are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The max-coloring problem is to compute a legal coloring of the vertices of a graph G = (V, E) with a non-negative weight function w on V such that Sigma(k)(i=1) max(v epsilon Ci) w(v(i)) is minimized, where C-1, ... , C-k are the various color classes. Max-coloring general graphs is as hard as the classical vertex coloring problem, a special case where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring abroad class of trees and show it can be solved in time O(vertical bar V vertical bar+time for sorting the vertex weights). When vertex weights belong to R, we show a matching lower bound of Omega(vertical bar V vertical bar log vertical bar V vertical bar) in the algebraic computation tree model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let G = (V, E) be a finite, simple and undirected graph. For S subset of V, let delta(S, G) = {(u, v) is an element of E : u is an element of S and v is an element of V - S} be the edge boundary of S. Given an integer i, 1 <= i <= vertical bar V vertical bar, let the edge isoperimetric value of G at i be defined as b(e)(i, G) = min(S subset of V:vertical bar S vertical bar=i)vertical bar delta(S, G)vertical bar. The edge isoperimetric peak of G is defined as b(e)(G) = max(1 <= j <=vertical bar V vertical bar)b(e)(j, G). Let b(v)(G) denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi: 10.1016/j.disc.2007.05.014)]. In this paper we provide bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees. The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show that for a complete binary tree of depth d (denoted as T-d(2)), c(1)d <= b(e) (T-d(2)) <= d and c(2)d <= b(v)(T-d(2)) <= d where c(1), c(2) are constants. For a complete t-ary tree of depth d (denoted as T-d(t)) and d >= c log t where c is a constant, we show that c(1)root td <= b(e)(T-d(t)) <= td and c(2)d/root t <= b(v) (T-d(t)) <= d where c(1), c(2) are constants. At the heart of our proof we have the following theorem which works for an arbitrary rooted tree and not just for a complete t-ary tree. Let T = (V, E, r) be a finite, connected and rooted tree - the root being the vertex r. Define a weight function w : V -> N where the weight w(u) of a vertex u is the number of its successors (including itself) and let the weight index eta(T) be defined as the number of distinct weights in the tree, i.e eta(T) vertical bar{w(u) : u is an element of V}vertical bar. For a positive integer k, let l(k) = vertical bar{i is an element of N : 1 <= i <= vertical bar V vertical bar, b(e)(i, G) <= k}vertical bar. We show that l(k) <= 2(2 eta+k k)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A deep theoretical analysis of the graph cut image segmentation framework presented in this paper simultaneously translates into important contributions in several directions. The most important practical contribution of this work is a full theoretical description, and implementation, of a novel powerful segmentation algorithm, GC(max). The output of GC(max) coincides with a version of a segmentation algorithm known as Iterative Relative Fuzzy Connectedness, IRFC. However, GC(max) is considerably faster than the classic IRFC algorithm, which we prove theoretically and show experimentally. Specifically, we prove that, in the worst case scenario, the GC(max) algorithm runs in linear time with respect to the variable M=|C|+|Z|, where |C| is the image scene size and |Z| is the size of the allowable range, Z, of the associated weight/affinity function. For most implementations, Z is identical to the set of allowable image intensity values, and its size can be treated as small with respect to |C|, meaning that O(M)=O(|C|). In such a situation, GC(max) runs in linear time with respect to the image size |C|. We show that the output of GC(max) constitutes a solution of a graph cut energy minimization problem, in which the energy is defined as the a"" (a) norm ayenF (P) ayen(a) of the map F (P) that associates, with every element e from the boundary of an object P, its weight w(e). This formulation brings IRFC algorithms to the realm of the graph cut energy minimizers, with energy functions ayenF (P) ayen (q) for qa[1,a]. Of these, the best known minimization problem is for the energy ayenF (P) ayen(1), which is solved by the classic min-cut/max-flow algorithm, referred to often as the Graph Cut algorithm. We notice that a minimization problem for ayenF (P) ayen (q) , qa[1,a), is identical to that for ayenF (P) ayen(1), when the original weight function w is replaced by w (q) . Thus, any algorithm GC(sum) solving the ayenF (P) ayen(1) minimization problem, solves also one for ayenF (P) ayen (q) with qa[1,a), so just two algorithms, GC(sum) and GC(max), are enough to solve all ayenF (P) ayen (q) -minimization problems. We also show that, for any fixed weight assignment, the solutions of the ayenF (P) ayen (q) -minimization problems converge to a solution of the ayenF (P) ayen(a)-minimization problem (ayenF (P) ayen(a)=lim (q -> a)ayenF (P) ayen (q) is not enough to deduce that). An experimental comparison of the performance of GC(max) and GC(sum) algorithms is included. This concentrates on comparing the actual (as opposed to provable worst scenario) algorithms' running time, as well as the influence of the choice of the seeds on the output.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For clustered survival data, the traditional Gehan-type estimator is asymptotically equivalent to using only the between-cluster ranks, and the within-cluster ranks are ignored. The contribution of this paper is two fold: - (i) incorporating within-cluster ranks in censored data analysis, and; - (ii) applying the induced smoothing of Brown and Wang (2005, Biometrika) for computational convenience. Asymptotic properties of the resulting estimating functions are given. We also carry out numerical studies to assess the performance of the proposed approach and conclude that the proposed approach can lead to much improved estimators when strong clustering effects exist. A dataset from a litter-matched tumorigenesis experiment is used for illustration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we obtain explicit solutions of a linear PDE subject to a class of radial square integrable functions with a monotonically increasing weight function |x|(n-1)e(beta vertical bar x vertical bar 2)/2, beta >= 0, x is an element of R-n. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n > 1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Edge cracked specimens have been widely utilized for fracture testing. Edge cracked semicircular disk (ECSD) specimen has now been well characterized with regard to its form factor and weight function. This paper presents a modified semicircular ring version of this specimen to enhance the form factor in general while retaining other desirable features. The efficacy of the modified design is proved by combining theory of elasticity solutions with finite element results to arrive at the optimum design geometry. New insights emerging from this work are used to theoretically re-examine the arch-tension and the four-point bend specimens. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the equation Delta(2)u = g(x, u) >= 0 in the sense of distribution in Omega' = Omega\textbackslash {0} where u and -Delta u >= 0. Then it is known that u solves Delta(2)u = g(x, u) + alpha delta(0) - beta Delta delta(0), for some nonnegative constants alpha and beta. In this paper, we study the existence of singular solutions to Delta(2)u = a(x) f (u) + alpha delta(0) - beta Delta delta(0) in a domain Omega subset of R-4, a is a nonnegative measurable function in some Lebesgue space. If Delta(2)u = a(x) f (u) in Omega', then we find the growth of the nonlinearity f that determines alpha and beta to be 0. In case when alpha = beta = 0, we will establish regularity results when f (t) <= Ce-gamma t, for some C, gamma > 0. This paper extends the work of Soranzo (1997) where the author finds the barrier function in higher dimensions (N >= 5) with a specific weight function a(x) = |x|(sigma). Later, we discuss its analogous generalization for the polyharmonic operator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

由功能互等定理导出用半权函数表示的各向异性板应力强度因子的解析表达式,并给出基于Reissner板理论含裂纹的各向异性板受弯曲、扭转和剪切作用的半权函数。计算含中心裂纹四边自由受纯弯曲作用板的应力强度因子,并与有关的结果进行比较,表明此方法简便、可靠。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

应用半权函数法求解双材料界面裂纹的平面问题.由平衡方程、应力应变关系、界面的连续条件以及裂纹面零应力条件推导出裂尖的位移和应力场,其特征值为lambda及其共轭.设置特征值为lambda的虚拟位移和应力场,即界面裂纹的半权函数.由功的互等定理得到应力强度因子KⅠ和KⅡ以半权函数与绕裂尖围道上参考位移和应力积分关系的表达式.数值算例体现了半权函数法精度可靠、计算简便的特点.