On the construction of new bent functions from the max-weight and min-weight functions of old bent functions


Autoria(s): Climent, Joan-Josep; García García, Francisco Jesús; Requena Arévalo, Verónica
Contribuinte(s)

Universidad de Alicante. Departamento de Matemáticas

Universidad de Alicante. Departamento de Métodos Cuantitativos y Teoría Económica

Grupo de Álgebra y Geometría (GAG)

Data(s)

22/02/2016

22/02/2016

01/12/2015

Resumo

Given a bent function f (x) of n variables, its max-weight and min-weight functions are introduced as the Boolean functions f + (x) and f − (x) whose supports are the sets {a ∈ Fn2 | w( f ⊕la) = 2n−1+2 n 2 −1} and {a ∈ Fn2 | w( f ⊕la) = 2n−1−2 n 2 −1} respectively, where w( f ⊕ la) denotes the Hamming weight of the Boolean function f (x) ⊕ la(x) and la(x) is the linear function defined by a ∈ Fn2 . f + (x) and f − (x) are proved to be bent functions. Furthermore, combining the 4 minterms of 2 variables with the max-weight or min-weight functions of a 4-tuple ( f0(x), f1(x), f2(x), f3(x)) of bent functions of n variables such that f0(x) ⊕ f1(x) ⊕ f2(x) ⊕ f3(x) = 1, a bent function of n + 2 variables is obtained. A family of 4-tuples of bent functions satisfying the above condition is introduced, and finally, the number of bent functions we can construct using the method introduced in this paper are obtained. Also, our construction is compared with other constructions of bent functions.

Identificador

SeMA Journal. 2015, 72(1): 13-36. doi:10.1007/s40324-015-0042-0

2254-3902 (Print)

2281-7875 (Online)

http://hdl.handle.net/10045/53310

10.1007/s40324-015-0042-0

Idioma(s)

eng

Publicador

Springer Milan

Relação

http://dx.doi.org/10.1007/s40324-015-0042-0

Direitos

© Sociedad Española de Matemática Aplicada 2015. The final publication is available at Springer via http://dx.doi.org/10.1007/s40324-015-0042-0

info:eu-repo/semantics/openAccess

Palavras-Chave #Boolean function #Linear function #Bent function #Support #Minterm #Max-weight function #Álgebra #Fundamentos del Análisis Económico
Tipo

info:eu-repo/semantics/article