842 resultados para Mathematical operators
Resumo:
A study was developed in order to build a function M invariant in time, by means of Hamiltonian's formulation, taking into account the equation associated to the problem, showing that starting from this function the equation of motion of the system with the contour conditions for non-conservative considered problems can be obtained. The Hamiltonian method is extended for these kind of systems in order to validate for non-potential operators through variational approach.
Resumo:
The existence of a classical limit describing the interacting particles in a second-quantized theory of identical particles with bosonic symmetry is proved. This limit exists in addition to the previously established classical limit with a classical field behavior, showing that the limit h -> 0 of the theory is not unique. An analogous result is valid for a free massive scalar field: two distinct classical limits are proved to exist, describing a system of particles or a classical field. The introduction of local operators in order to represent kinematical properties of interest is shown to break the permutation symmetry under some localizability conditions, allowing the study of individual particle properties.
Resumo:
We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.
Resumo:
A variational inequality problem (VIP) satisfying a constraint qualification can be reduced to a mixed complementarity problem (MCP). Monotonicity of the VIP implies that the MCP is also monotone. Introducing regularizing perturbations, a sequence of strictly monotone mixed complementarity problems is generated. It is shown that, if the original problem is solvable, the sequence of computable inexact solutions of the strictly monotone MCP's is bounded and every accumulation point is a solution. Under an additional condition on the precision used for solving each subproblem, the sequence converges to the minimum norm solution of the MCP. Copyright © 2000 by Marcel Dekker, Inc.
Resumo:
The energy states of the confined harmonic oscillator and the Hulthén potentials are evaluated using the Variational Method associated to Supersymmetric Quantum Mechanics.
Resumo:
Reliability is a key aspect in power system design and planning. Maintaining a reliable power system is a very important issue for their design and operation. Under the new competitive framework of the electricity sector, power systems find ever more and more strained to operate near their limits. Under this new scenario, it is crucial for the system operator to use tools that facilitate an energy dispatch that minimizes possible power cuts. This paper presents a mathematical model to calculate an energy dispatch that considers security constraints (single contingencies in transmission lines and transformers). The model involves pool markets and fixed bilateral contracts. Traditional methodologies that include security constraints are usually based in multistage dispatch processes. In this case, we propose a single-stage model that avoids the economic inefficiencies which result when conventional multi-stage dispatch approaches are applied. The proposed model includes an AC representation of the transport system and allows calculating the cost overruns incurred in due to reliability restrictions. We found that complying with fixed bilateral contracts, when they go above certain levels, might lead to congestion problems in transmission lines.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The outdating of cartographic products affects planning. It is important to propose methods to help detect changes in surface. Thus, the combined use of remote sensing image and techniques of digital image processing has contributed significantly to minimize such outdating. Mathematical morphology is an image processing technique which describes quantitatively geometric structures presented in the image and provides tools such as edge detectors and morphological filters. Previous studies have shown that the technique has potential on the detection of significant features. Thus, this paper proposes a routine of morphological operators to detect a road network. The test area corresponds to an excerpt Quickbird image and has as a feature of interest an avenue of the city of Presidente Prudente, SP. In the processing, the main morphological operators used were threshad, areaopen, binary and erosion. To estimate the accuracy with which the linear features were detected, it was done the analysis of linear correlation between vectors of the features detected and the corresponding topographical map of the region. The results showed that the mathematical morphology can be used in cartography, aiming to use them in conventional cartographic updating processes.
Resumo:
A method for context-sensitive analysis of binaries that may have obfuscated procedure call and return operations is presented. Such binaries may use operators to directly manipulate stack instead of using native call and ret instructions to achieve equivalent behavior. Since definition of context-sensitivity and algorithms for context-sensitive analysis have thus far been based on the specific semantics associated to procedure call and return operations, classic interprocedural analyses cannot be used reliably for analyzing programs in which these operations cannot be discerned. A new notion of context-sensitivity is introduced that is based on the state of the stack at any instruction. While changes in 'calling'-context are associated with transfer of control, and hence can be reasoned in terms of paths in an interprocedural control flow graph (ICFG), the same is not true of changes in 'stack'-context. An abstract interpretation based framework is developed to reason about stack-contexts and to derive analogues of call-strings based methods for the context-sensitive analysis using stack-context. The method presented is used to create a context-sensitive version of Venable et al.'s algorithm for detecting obfuscated calls. Experimental results show that the context-sensitive version of the algorithm generates more precise results and is also computationally more efficient than its context-insensitive counterpart. Copyright © 2010 ACM.
Resumo:
A novel method to probe the diverse phases for the extended Hubbard model (EHM), including the correlated hopping term, is presented. We extend an effective medium approach [1] to a bipartite lattice, allowing for charge- and/or spin-ordered phases. We calculate the necessary correlation functions to build the EHM phase diagram.
Resumo:
This paper is a continuation and a complement of our previous work on isomorphic classification of some spaces of compact operators. We improve the main result concerning extensions of the classical isomorphic classification of the Banach spaces of continuous functions on ordinals. As an application, fixing an ordinal a and denoting by X(xi), omega(alpha) <= xi < omega(alpha+1), the Banach space of all X-valued continuous functions defined in the interval of ordinals [0,xi] and equipped with the supremum, we provide complete isomorphic classifications of some Banach spaces K(X(xi),Y(eta)) of compact operators from X(xi) to Y(eta), eta >= omega. It is relatively consistent with ZFC (Zermelo-Fraenkel set theory with the axiom of choice) that these results include the following cases: 1.X* contains no copy of c(0) and has the Mazur property, and Y = c(0)(J) for every set J. 2. X = c(0)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < infinity. 3. X = l(p)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < p < infinity.
Resumo:
We prove an extension of the classical isomorphic classification of Banach spaces of continuous functions on ordinals. As a consequence, we give complete isomorphic classifications of some Banach spaces K(X,Y(n)), eta >= omega, of compact operators from X to Y(eta), the space of all continuous Y-valued functions defined in the interval of ordinals [1, eta] and equipped with the supremum norm. In particular, under the Continuum Hypothesis, we extend a recent result of C. Samuel by classifying, up to isomorphism, the spaces K(X(xi), c(0)(Gamma)(eta)), where omega <= xi < omega(1,) eta >= omega, Gamma is a countable set, X contains no complemented copy of l(1), X* has the Mazur property and the density character of X** is less than or equal to N(1).
Resumo:
Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.
Resumo:
This paper concerns the spaces of compact operators kappa(E,F), where E and F are Banach spaces C([1, xi], X) of all continuous X-valued functions defined on the interval of ordinals [1, xi] and equipped with the supremun norm. We provide sufficient conditions on X, Y, alpha, beta, xi and eta, with omega <= alpha <= beta < omega 1 for the following equivalence: (a) kappa(C([1, xi], X), C([1, alpha], Y)) is isomorphic to kappa(C([1,eta], X), C([1, beta], Y)), (b) beta < alpha(omega). In this way, we unify and extend results due to Bessaga and Pelczynski (1960) and C. Samuel (2009). Our result covers the case of the classical spaces X = l(p) and Y = l(q) with 1 < p, q < infinity.
Resumo:
A full set of Casimir operators for the Lie superalgebra gl(m/infinity) is constructed and shown to be well defined in the category O-FS generated by the highest-weight irreducible representations with only a finite number of non-zero weight components. The eigenvalues of these Casimir operators are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from gl(m/infinity) are also determined.