963 resultados para Manufacturing engineering
Resumo:
Includes bibliography.
Resumo:
Students at Cranfield Manufacturing Systems Centre helped Brompton Bikes formulate a strategy to meet rapid sales growth. The students took up Operations Excellence MSc, a two-year part-time programme based on the Cranfield MSc in Engineering and Management of Manufacturing Systems, include the Realising Competitive Manufacture module, which is set out to consolidate and embed the knowledge and skills developed throughout the two-year programme. Guided by StratNav process, the students analysed the product families of Brompton, established the basis on which they compete in the market place, and then benchmarked against key competitors. The top five developments identified to be needed by Brompton are: the formation of group technology cells, creation of a robotic brazing facility, and training and recruitment initiatives for production staff.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods.
Resumo:
Nickel-based super alloys are used in a variety of applications in which high-temperature strength and resistance to creep, corrosion, and oxidation are required, such as in aircraft gas turbines, combustion chambers, and automotive engine valves. The properties that make these materials suitable for these applications also make them difficult to grind. Grinding systems for such materials are often built around vitrified cBN (cubic boron nitride) wheels to realize maximum productivity and minimum cost per part. Conditions that yield the most economical combination of stock removal rate and wheel wear are key to the successful implementation of the grinding system. Identifying the transition point for excessive wheel wear is important. The aim of this study is to compare the performance of different cBN wheels when grinding difficult-to-grind (DTG) materials by determining the 'wheel wear characteristic curve', which correlates the G-ratio to the calculated tangential force per abrasive grain. With the proposed methodology, a threshold force per grit above which the wheel wear rate increases rapidly can be quickly identified. A comparison of performance for two abrasive product formulations in the grinding of three materials is presented. The obtained results can be applied for the development of grinding applications for DTG materials.
Resumo:
This paper proposes an architecture for machining process and production monitoring to be applied in machine tools with open Computer numerical control (CNC). A brief description of the advantages of using open CNC for machining process and production monitoring is presented with an emphasis on the CNC architecture using a personal computer (PC)-based human-machine interface. The proposed architecture uses the CNC data and sensors to gather information about the machining process and production. It allows the development of different levels of monitoring systems with mininium investment, minimum need for sensor installation, and low intrusiveness to the process. Successful examples of the utilization of this architecture in a laboratory environment are briefly described. As a Conclusion, it is shown that a wide range of monitoring solutions can be implemented in production processes using the proposed architecture.
Resumo:
Tool wear is a very important subject affecting the economics of machining, especially in tapping, since it is one of the last operations to be performed within most operation sequences. In the present study, some aspects of tapping such as the mechanisms and types of wear were investigated in taps working at conventional and high-speed cutting (HSC). Additionally, different types of coatings and cooling /lubrication conditions were used. The tapping operation (M8 x 1.25) was performed in through holes with two cutting speeds (30 and 60 m/min) in grey cast iron GG25. Lubrication conditions tested were dry and with minimal quantity of lubricant. Tap materials were manufactured by powder metallurgy and coated with (TiAl)N and with TiCN. A go-non-go gauge criterion was used to assess tool life. The wear and surface aspects of the tools and workpiece were evaluated by scanning electron microscopy and energy dissipation spectroscopy. Torque signals were also measured during the tests. The main wear mechanism observed was adhesion, although some abrasion and diffusion may also have occurred, and the main type of wear was flank wear. The adhesion of workpiece material on the tool was the main and decisive factor ending tool life. Tool coatings proved to be an efficient way to minimize adhesion. Torque signals followed the same pattern as the flank wear and no significant change was observed when the cutting speed was increased.
Resumo:
Ultraprecision diamond turning was used to evaluate the surface integrity of a carbon nanotube (CNT) composite as a function of the cutting conditions and the percentage of CNT in the epoxy matrix. The effects of cutting conditions on the chip morphology and surface roughness were analysed. The results showed that an increase in the percentage of CNT may influence the mechanism of material removal and consequently improve the quality of the machined surface. When smaller quantities of CNT (0.02 and 0.07 wt %) are present in the matrix, microcracks form within the cutting grooves (perpendicular to the cutting direction). This indicates that the amount of CNT on the epoxy matrix may have a direct influence on the mechanical properties of these materials. Chips removed from the CNT composite samples were analysed by scanning electron microscopy in order to correlate the material removal mechanism and the surface generation process. The area average surface roughness Sa was influenced by the material removal mechanism (Sa ranging from 0.28 to 1.1 mu m).
Resumo:
Single-point diamond turning of monocrystalline semiconductors is an important field of research within brittle materials machining. Monocrystalline silicon samples with a (100) orientation have been diamond turned under different cutting conditions (feed rate and depth of cut). Micro-Raman spectroscopy and atomic force microscopy have been used to assess structural alterations and surface finish of the samples diamond turned under ductile and brittle modes. It was found that silicon undergoes a phase transformation when machined in the ductile mode. This phase transformation is evidenced by the creation of an amorphous surface layer after machining which has been probed by Raman scattering. Compressive residual stresses are estimated for the machined surface and it is observed that they decrease with an increase in the feed rate and depth of cut. This behaviour has been attributed to the formation of subsurface cracks when the feed rate is higher than or equal to 2.5 mu m/rev. The surface roughness was observed to vary with the feed rate and the depth of cut. An increase in the surface roughness was influenced by microcrack formation when the feed rate reached 5.0 mu m/rev. Furthermore, a high-pressure phase transformation induced by the tool/material interaction and responsible for the ductile response of this typical brittle material is discussed based upon the presented Raman spectra. The application of this machining technology finds use for a wide range of high quality components, for example the creation of a micrometre-range channel for microfluidic devices as well as microlenses used in the infrared spectrum range.
Resumo:
This paper develops a Markovian jump model to describe the fault occurrence in a manipulator robot of three joints. This model includes the changes of operation points and the probability that a fault occurs in an actuator. After a fault, the robot works as a manipulator with free joints. Based on the developed model, a comparative study among three Markovian controllers, H(2), H(infinity), and mixed H(2)/H(infinity) is presented, applied in an actual manipulator robot subject to one and two consecutive faults.
Resumo:
Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining was carried out to investigate microfracture, residual damage, and surface roughness associated with material removal and surface generation. Brittle versus plastic deformation was studied using Vickers indention and nano-indentation. To characterize the abrasive machining response, the 6H-SiC (0001) substrates were ground using diamond wheels with grit sizes of 25, 15 and 7 mum, and then polished with diamond suspensions of 3 and 0.05 mum. It is found that in indentation, there was a scale effect for brittle versus plastic deformation in 6H-SiC substrates. Also, in grinding, the scales of fracture and surface roughness of the substrates decreased with a decrease in diamond grit size. However, in polishing, a reduction in grit size of diamond suspensions gave no significant improvement in surface roughness. Furthermore, the results showed that fracture-free 6H-SiC (0001) surfaces were generated in polishing with the existence of the residual crystal defects, which were associated with the origin of defects in single crystal growth. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
High removal rate (up to 16.6 mm(3)/s per mm) grinding of alumina and alumina-titania was investigated with respect to material removal and basic grinding parameters using a resin-bond 160 mu m grit diamond wheel at the speeds of 40 and 160 m/s, respectively. The results show that the material removal for the single-phase polycrystalline alumina and the two-phase alumina-titania composite revealed identical mechanisms of microfracture and grain dislodgement under the grinding conditioned selected. There were no distinct differences in surface roughness and morphology for both materials ground at either conventional or high speed. An increase in material removal rate did not necessarily worsen the surface toughness for the two materials at both speeds. Also the grinding forces for the two ceramics demonstrated similar characteristics at any grinding speeds and specific removal rates. Both normal and tangential grinding forces and their force ratios at the high speed were lower than those at the conventional speed, regardless of removal rates. An increase in specific removal rate caused more rapid increases in normal and tangential forces obtained at the conventional grinding speed than those at the high speed. Furthermore, it is found that the high speed grinding at all the removal rates exerted a great amount of coolant-induced normal forces in grinding zone, which were 4-6 times higher than the pure normal grinding forces. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper compares two hypothetical and identical vehicle deceleration profiles mirrored in time, one linearly descending with time and the other linearly ascending with time. The differences of such profiles on occupant velocity differential and by implication, injury levels at the point of occupant impact are presented. An indifference point is established to assist in comparing which occupant body part will benefit from the altered crash pulse. It is shown that for occupant proximity distances below the indifference point, an ascending profile results in lower injury risk. Above the indifference point, the result is reversed.
Resumo:
The participation of the Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Stuttgart, Germany) and the companies User Interface Design GmbH (Ludwigsburg, Germany) plus MLR System GmbH (Ludwigsburg, Germany) enabled the research and findings presented in this paper; we would like to namely mention Birgit Graf and Theo Jacobs (Fraunhofer IPA) furthermore Peter Klein and Christiane Hartmann (User Interface Design GmbH).