An iterative agent bidding mechanism for responsive manufacturing


Autoria(s): Lim, Ming K.; Zhang, Z.; Goh, W.T.
Data(s)

01/10/2009

Resumo

In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods.

Formato

application/pdf

Identificador

http://eprints.aston.ac.uk/15535/1/EAAI-_LIM_(Revised_v2).pdf

Lim, Ming K.; Zhang, Z. and Goh, W.T. (2009). An iterative agent bidding mechanism for responsive manufacturing. Engineering Applications of Artificial Intelligence, 22 (7), pp. 1068-1079.

Relação

http://eprints.aston.ac.uk/15535/

Tipo

Article

PeerReviewed