746 resultados para Machine Vision


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work had two primary objectives: 1) to produce a working prototype for automated printability assessment and 2) to perform a study of available machine vision and other necessary hardware solutions. The three printability testing methods, IGT Picking,He¬liotest, and mottling, considered in this work have several different requirements and the task was to produce a single automated testing system suitable for all methods. A system was designed and built and its performance was tested using the Heliotest. Working proto¬types are important tools for implementing theoretical methods into practical systems and testing and demonstrating the methodsin real life conditions. The system was found to be sufficient for the Heliotest method. Further testing and possible modifications related to other two test methods were left for future works. A short study of available systems and solutions concerning image acquisition of machine vision was performed. The theoretical part of this study includes lighting systems, optical systems and image acquisition tools, mainly cameras and the underlying physical aspects for each portion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topic of this thesis is studying how lesions in retina caused by diabetic retinopathy can be detected from color fundus images by using machine vision methods. Methods for equalizing uneven illumination in fundus images, detecting regions of poor image quality due toinadequate illumination, and recognizing abnormal lesions were developed duringthe work. The developed methods exploit mainly the color information and simpleshape features to detect lesions. In addition, a graphical tool for collecting lesion data was developed. The tool was used by an ophthalmologist who marked lesions in the images to help method development and evaluation. The tool is a general purpose one, and thus it is possible to reuse the tool in similar projects.The developed methods were tested with a separate test set of 128 color fundus images. From test results it was calculated how accurately methods classify abnormal funduses as abnormal (sensitivity) and healthy funduses as normal (specificity). The sensitivity values were 92% for hemorrhages, 73% for red small dots (microaneurysms and small hemorrhages), and 77% for exudates (hard and soft exudates). The specificity values were 75% for hemorrhages, 70% for red small dots, and 50% for exudates. Thus, the developed methods detected hemorrhages accurately and microaneurysms and exudates moderately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mottling is one of the key defects in offset-printing. Mottling can be defined as unwanted unevenness of print. In this work, diameter of a mottle spot is defined between 0.5-10.0 mm. There are several types of mottling, but the reason behind the problem is still not fully understood. Several commercial machine vision products for the evaluation of print unevenness have been presented. Two of these methods used in these products have been implemented in this thesis. The one is the cluster method and the other is the band-pass method. The properties of human vision system have been taken into account in the implementation of these two methods. An index produced by the cluster method is a weighted sum of the number of found spots, and an index produced by band-pass method is a weighted sum of coefficients of variations of gray-levels for each spatial band. Both methods produce larger indices for visually poor samples, so they can discern good samples from the poor ones. The difference between the indices for good and poor samples is slightly larger produced by the cluster method. 11 However, without the samples evaluated by human experts, the goodness of these results is still questionable. This comparison will be left to the next phase of the project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the calibration and comparison of two systems, a machine vision system that uses 3 channel RGB images and a line scanning spectral system. Calibration. is the process of checking and adjusting the accuracy of a measuring instrument by comparing it with standards. For the RGB system self-calibrating methods for finding various parameters of the imaging device were developed. Color calibration was done and the colors produced by the system were compared to the known colors values of the target. Software drivers for the Sony Robot were also developed and a mechanical part to connect a camera to the robot was also designed. For the line scanning spectral system, methods for the calibrating the alignment of the system and the measurement of the dimensions of the line scanned by the system were developed. Color calibration of the spectral system is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The papermaking industry has been continuously developing intelligent solutions to characterize the raw materials it uses, to control the manufacturing process in a robust way, and to guarantee the desired quality of the end product. Based on the much improved imaging techniques and image-based analysis methods, it has become possible to look inside the manufacturing pipeline and propose more effective alternatives to human expertise. This study is focused on the development of image analyses methods for the pulping process of papermaking. Pulping starts with wood disintegration and forming the fiber suspension that is subsequently bleached, mixed with additives and chemicals, and finally dried and shipped to the papermaking mills. At each stage of the process it is important to analyze the properties of the raw material to guarantee the product quality. In order to evaluate properties of fibers, the main component of the pulp suspension, a framework for fiber characterization based on microscopic images is proposed in this thesis as the first contribution. The framework allows computation of fiber length and curl index correlating well with the ground truth values. The bubble detection method, the second contribution, was developed in order to estimate the gas volume at the delignification stage of the pulping process based on high-resolution in-line imaging. The gas volume was estimated accurately and the solution enabled just-in-time process termination whereas the accurate estimation of bubble size categories still remained challenging. As the third contribution of the study, optical flow computation was studied and the methods were successfully applied to pulp flow velocity estimation based on double-exposed images. Finally, a framework for classifying dirt particles in dried pulp sheets, including the semisynthetic ground truth generation, feature selection, and performance comparison of the state-of-the-art classification techniques, was proposed as the fourth contribution. The framework was successfully tested on the semisynthetic and real-world pulp sheet images. These four contributions assist in developing an integrated factory-level vision-based process control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weed mapping is a useful tool for site-specific herbicide applications. The objectives of this study were (1) to determine the percentage of land area covered by weeds in no-till and conventionally tilled fields of common bean using digital image processing and geostatistics, and (2) to compare two types of cameras. Two digital cameras (color and infrared) and a differential GPS were affixed to a center pivot structure for image acquisition. Sample field images were acquired in a regular grid pattern, and the images were processed to estimate the percentage of weed cover. After calculating the georeferenced weed percentage values, maps were constructed using geostatistical techniques. Based on the results, color images are recommended for mapping the percentage of weed cover in no-till systems, while infrared images are recommended for weed mapping in conventional tillage systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies the use of machine vision in RDF quality assurance and manufacturing. Currently machine vision is used in recycling and material detection and some commer- cial products are available in the market. In this thesis an on-line machine vision system is proposed for characterizing particle size. The proposed machine vision system is based on the mapping between image segmenta- tion and the ground truth of the particle size. The results shows that the implementation of such machine vision system is feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The review of intelligent machines shows that the demand for new ways of helping people in perception of the real world is becoming higher and higher every year. This thesis provides information about design and implementation of machine vision for mobile assembly robot. The work has been done as a part of LUT project in Laboratory of Intelligent Machines. The aim of this work is to create a working vision system. The qualitative and quantitative research were done to complete this task. In the first part, the author presents the theoretical background of such things as digital camera work principles, wireless transmission basics, creation of live stream, methods used for pattern recognition. Formulas, dependencies and previous research related to the topic are shown. In the second part, the equipment used for the project is described. There is information about the brands, models, capabilities and also requirements needed for implementation. Although, the author gives a description of LabVIEW software, its add-ons and OpenCV which are used in the project. Furthermore, one can find results in further section of considered thesis. They mainly represented by screenshots from cameras, working station and photos of the system. The key result of this thesis is vision system created for the needs of mobile assembly robot. Therefore, it is possible to see graphically what was done on examples. Future research in this field includes optimization of the pattern recognition algorithm. This will give less response time for recognizing objects. Presented by author system can be used also for further activities which include artificial intelligence usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is based on Artificial Intelligence (A.I) and Digital Image processing (I.P) for automatic condition monitoring of sleepers in the railway track. Rail inspection is a very important task in railway maintenance for traffic safety issues and in preventing dangerous situations. Monitoring railway track infrastructure is an important aspect in which the periodical inspection of rail rolling plane is required.Up to the present days the inspection of the railroad is operated manually by trained personnel. A human operator walks along the railway track searching for sleeper anomalies. This monitoring way is not more acceptable for its slowness and subjectivity. Hence, it is desired to automate such intuitive human skills for the development of more robust and reliable testing methods. Images of wooden sleepers have been used as data for my project. The aim of this project is to present a vision based technique for inspecting railway sleepers (wooden planks under the railway track) by automatic interpretation of Non Destructive Test (NDT) data using A.I. techniques in determining the results of inspection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal behavioral parameters can be used to assess welfare status in commercial broiler breeders. Behavioral parameters can be monitored with a variety of sensing devices, for instance, the use of video cameras allows comprehensive assessment of animal behavioral expressions. Nevertheless, the development of efficient methods and algorithms to continuously identify and differentiate animal behavior patterns is needed. The objective this study was to provide a methodology to identify hen white broiler breeder behavior using combined techniques of image processing and computer vision. These techniques were applied to differentiate body shapes from a sequence of frames as the birds expressed their behaviors. The method was comprised of four stages: (1) identification of body positions and their relationship with typical behaviors. For this stage, the number of frames required to identify each behavior was determined; (2) collection of image samples, with the isolation of the birds that expressed a behavior of interest; (3) image processing and analysis using a filter developed to separate white birds from the dark background; and finally (4) construction and validation of a behavioral classification tree, using the software tool Weka (model 148). The constructed tree was structured in 8 levels and 27 leaves, and it was validated using two modes: the set training mode with an overall rate of success of 96.7%, and the cross validation mode with an overall rate of success of 70.3%. The results presented here confirmed the feasibility of the method developed to identify white broiler breeder behavior for a particular group of study. Nevertheless, more improvements in the method can be made in order to increase the validation overall rate of success. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes the use of Artificial Intelligence (IA) techniques applied in cells of a manufacturing system. Machine Vision was used to identify pieces and their positions of two different products to be assembled in the same productive line. This information is given as input for an IA planner embedded in the manufacturing system. Therefore, initial and final states are sent automatically to the planner capable to generate assembly plans for a robotic cell, in real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"May 1986."