Machine vision to identify broiler breeder behavior


Autoria(s): Pereira, Danilo F.; Miyamoto, Bruno C. B.; Maia, Guilherme D. N.; Sales, G. Tatiana; Magalhaes, Marcelo M.; Gates, Richard S.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/12/2014

03/12/2014

01/11/2013

Resumo

Animal behavioral parameters can be used to assess welfare status in commercial broiler breeders. Behavioral parameters can be monitored with a variety of sensing devices, for instance, the use of video cameras allows comprehensive assessment of animal behavioral expressions. Nevertheless, the development of efficient methods and algorithms to continuously identify and differentiate animal behavior patterns is needed. The objective this study was to provide a methodology to identify hen white broiler breeder behavior using combined techniques of image processing and computer vision. These techniques were applied to differentiate body shapes from a sequence of frames as the birds expressed their behaviors. The method was comprised of four stages: (1) identification of body positions and their relationship with typical behaviors. For this stage, the number of frames required to identify each behavior was determined; (2) collection of image samples, with the isolation of the birds that expressed a behavior of interest; (3) image processing and analysis using a filter developed to separate white birds from the dark background; and finally (4) construction and validation of a behavioral classification tree, using the software tool Weka (model 148). The constructed tree was structured in 8 levels and 27 leaves, and it was validated using two modes: the set training mode with an overall rate of success of 96.7%, and the cross validation mode with an overall rate of success of 70.3%. The results presented here confirmed the feasibility of the method developed to identify white broiler breeder behavior for a particular group of study. Nevertheless, more improvements in the method can be made in order to increase the validation overall rate of success. (C) 2013 Elsevier B.V. All rights reserved.

Formato

194-199

Identificador

http://dx.doi.org/10.1016/j.compag.2013.09.012

Computers And Electronics In Agriculture. Oxford: Elsevier Sci Ltd, v. 99, p. 194-199, 2013.

0168-1699

http://hdl.handle.net/11449/112974

10.1016/j.compag.2013.09.012

WOS:000327919700024

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Computers and Electronics in Agriculture

Direitos

closedAccess

Palavras-Chave #Image analysis #Poultry #Data mining #Precision agriculture in animal production
Tipo

info:eu-repo/semantics/article