976 resultados para MÉTODOS ITERATIVOS (MATEMÁTICAS)
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Eléctrica con orientación en Control Automático) UANL, 2014.
Resumo:
Neste trabalho procuramos analisar alguns métodos iterativos e os processos de aceleração na solução lineares grandes e esparsos, associando o uso de alguns pré-condicionadores, tais como os métodos de fatoração incompleta. De forma mais específica, nos detivemos no estudo deos métodos de fatoração incompleta LU, ou ILU, e o método de Cholesky incompleto. Para isso procuramos antes definir algumas especificidades sobre esses métodos, tais como, crtérios de existência, limitação. Alguns fatores analisam tais problemas e sugerem algumas técnicas de conserto, ou seja, algumas maneiras de eliminar tais falhas para que os métodos de iteração possam ser utlizados para determinar soluções mais próximas da solução real. Procedemos a uma revisão teórica de alguns dos métodos iterativos, dos pré-condicionadores. Jacobi, fatoração incompleta LU e fatoração incompleta de Cholesky e a sua associação com os métodos iterativos GMRES e Gradiente Conjugado. Utilizando os pré-condionadores associados aos métodos iterativos citados e fixando alguns parâmetros de parada, aplicamos algusn testes. Os resultados e a análise dos mesmos encontram-se neste trabalho.
Resumo:
Independientemente de la metodología que se adopte en el desarrollo de software, se contemplan aquellas actividades gerenciales o de dirección del proyecto y las inherentes a las técnicas, propias del desarrollo del producto como tal, como los requerimientos demandados, análisis, diseño, implementación y pruebas o ensayos previos a su materialización -- El presente trabajo se deriva del interés por diseñar una metodología para la gestión de la fase de pruebas y ensayo, con base en el modelo de integración de las actividades contempladas en la guía del PMBOK, la cual es compatible con las funciones de dirección y actividades técnicas de otras metodologías, especialmente en su etapa de prueba; de allí la importancia que representa para los gerentes de proyectos obtener resultados satisfactorios en esta fase, por su impacto directo y significativo en el cumplimiento del tiempo y los costos estimados, lo que permite prevenir o mitigar, tiempos adicionales o sobrecostos por reproceso, evitando ser transferidos al cliente o asumidos por el fabricante de software -- Así mismo, asegurar una ejecución correcta de la fase de pruebas y ensayo, garantiza que el proyecto responda a los estándares de calidad, de acuerdo con sus indicadores de medición y la satisfacción del usuario
Resumo:
Visualization of vector fields plays an important role in research activities nowadays -- Web applications allow a fast, multi-platform and multi-device access to data, which results in the need of optimized applications to be implemented in both high-performance and low-performance devices -- Point trajectory calculation procedures usually perform repeated calculations due to the fact that several points might lie over the same trajectory -- This paper presents a new methodology to calculate point trajectories over highly-dense and uniformly-distributed grid of points in which the trajectories are forced to lie over the points in the grid -- Its advantages rely on a highly parallel computing architecture implementation and in the reduction of the computational effort to calculate the stream paths since unnecessary calculations are avoided, reusing data through iterations -- As case study, the visualization of oceanic currents through in the web platform is presented and analyzed, using WebGL as the parallel computing architecture and the rendering Application Programming Interface
Resumo:
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas.
Resumo:
Desde a década de 1960, devido à pertinência para a indústria petrolífera, a simulação numérica de reservatórios de petróleo tornou-se uma ferramenta usual e uma intensa área de pesquisa. O principal objetivo da modelagem computacional e do uso de métodos numéricos, para a simulação de reservatórios de petróleo, é o de possibilitar um melhor gerenciamento do campo produtor, de maneira que haja uma maximização na recuperação de hidrocarbonetos. Este trabalho tem como objetivo principal paralelizar, empregando a interface de programação de aplicativo OpenMP (Open Multi-Processing), o método numérico utilizado na resolução do sistema algébrico resultante da discretização da equação que descreve o escoamento monofásico em um reservatório de gás, em termos da variável pressão. O conjunto de equações governantes é formado pela equação da continuidade, por uma expressão para o balanço da quantidade de movimento e por uma equação de estado. A Equação da Difusividade Hidráulica (EDH), para a variável pressão, é obtida a partir deste conjunto de equações fundamentais, sendo então discretizada pela utilização do Método de Diferenças Finitas, com a escolha por uma formulação implícita. Diferentes testes numéricos são realizados a fim de estudar a eficiência computacional das versões paralelizadas dos métodos iterativos de Jacobi, Gauss-Seidel, Sobre-relaxação Sucessiva, Gradientes Conjugados (CG), Gradiente Biconjugado (BiCG) e Gradiente Biconjugado Estabilizado (BiCGStab), visando a uma futura aplicação dos mesmos na simulação de reservatórios de gás. Ressalta-se que a presença de heterogeneidades na rocha reservatório e/ou às não-linearidades presentes na EDH para o escoamento de gás aumentam a necessidade de métodos eficientes do ponto de vista de custo computacional, como é o caso de estratégias usando OpenMP.
Resumo:
Este trabalho tem como objetivo desenvolver e empregar técnicas e estruturas de dados agrupadas visando paralelizar os métodos do subespaço de Krylov, fazendo-se uso de diversas ferramentas e abordagens. A partir dos resultados é feita uma análise comparativa de desemvpenho destas ferramentas e abordagens. As paralelizações aqui desenvolvidas foram projetadas para serem executadas em um arquitetura formada por um agregado de máquinas indepentes e multiprocessadas (Cluster), ou seja , são considerados o paralelismo e intra-nodos. Para auxiliar a programação paralela em clusters foram, e estão sendo, desenvolvidas diferentes ferramentas (bibliotecas) que visam a exploração dos dois níveis de paralelismo existentes neste tipo de arquitetura. Neste trabalho emprega-se diferentes bibliotecas de troca de mensagens e de criação de threads para a exploração do paralelismo inter-nodos e intra-nodos. As bibliotecas adotadas são o DECK e o MPICH e a Pthread. Um dos itens a serem analisados nestes trabalho é acomparação do desempenho obtido com essas bibliotecas.O outro item é a análise da influência no desemepnho quando quando tulizadas múltiplas threads no paralelismo em clusters multiprocessados. Os métodos paralelizados nesse trabalho são o Gradiente Conjugação (GC) e o Resíduo Mínmo Generalizado (GMRES), quepodem ser adotados, respectivamente, para solução de sistemas de equações lineares sintéticos positivos e definidos e não simétricas. Tais sistemas surgem da discretização, por exemplo, dos modelos da hidrodinâmica e do transporte de massa que estão sendo desenvolvidos no GMCPAD. A utilização desses métodos é justificada pelo fato de serem métodos iterativos, o que os torna adequados à solução de sistemas de equações esparsas e de grande porte. Na solução desses sistemas através desses métodos iterativos paralelizados faz-se necessário o particionamento do domínio do problema, o qual deve ser feito visando um bom balanceamento de carga e minimização das fronteiras entre os sub-domínios. A estrutura de dados desenvolvida para os métodos paralelizados nesse trabalho permite que eles sejam adotados para solução de sistemas de equações gerados a partir de qualquer tipo de particionamento, pois o formato de armazenamento de dados adotado supre qualquer tipo de dependência de dados. Além disso, nesse trabalho são adotadas duas estratégias de ordenação para as comunicações, estratégias essas que podem ser importantes quando se considera a portabilidade das paralelizações para máquinas interligadas por redes de interconexão com buffer de tamanho insuficiente para evitar a ocorrência de dealock. Os resultados obtidos nessa dissertação contribuem nos trabalhos do GMCPAD, pois as paralelizações são adotadas em aplicações que estão sendo desenvolvidas no grupo.
Resumo:
Fenômenos naturais, tecnológicos e industriais podem, em geral, ser modelados de modo acurado através de equações diferenciais parciais, definidas sobre domínios contínuos que necessitam ser discretizados para serem resolvidos. Dependendo do esquema de discretização utilizado, pode-se gerar sistemas de equações lineares. Esses sistemas são, de modo geral, esparsos e de grande porte, onde as incógnitas podem ser da ordem de milhares, ou até mesmo de milhões. Levando em consideração essas características, o emprego de métodos iterativos é o mais apropriado para a resolução dos sistemas gerados, devido principalmente a sua potencialidade quanto à otimização de armazenamento e eficiência computacional. Uma forma de incrementar o desempenho dos métodos iterativos é empregar uma técnica multigrid. Multigrid são uma classe de métodos que resolvem eficientemente um grande conjunto de equações algébricas através da aceleração da convergência de métodos iterativos. Considerando que a resolução de sistemas de equações de problemas realísticos pode requerer grande capacidade de processamento e de armazenamento, torna-se imprescindível o uso de ambientes computacionais de alto desempenho. Uma das abordagens encontradas na literatura técnica para a resolução de sistemas de equações em paralelo é aquela que emprega métodos de decomposição de domínio (MDDs). Os MDDs são baseados no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções obtidas em cada um dos subdomínios Assim, neste trabalho são disponibilizados diferentes métodos de resolução paralela baseado em decomposição de domínio, utilizando técnicas multigrid para a aceleração da solução de sistemas de equações lineares. Para cada método, são apresentados dois estudos de caso visando a validação das implementações. Os estudos de caso abordados são o problema da difusão de calor e o modelo de hidrodinâmica do modelo UnHIDRA. Os métodos implementados mostraram-se altamente paralelizáveis, apresentando bons ganhos de desempenho. Os métodos multigrid mostraram-se eficiente na aceleração dos métodos iterativos, já que métodos que utilizaram esta técnica apresentaram desempenho superior aos métodos que não utilizaram nenhum método de aceleração.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais com o ambiente geológico, que na grande maioria das vezes trata-se de solos parcialmente saturados. Neste sentido, o desempenho de obras como estabilização, contenção de barragens, muros de contenção, fundações e estradas estão condicionados a uma correta predição do fluxo de água no interior dos solos. Porém, como a área das regiões a serem estudas com relação à predição do fluxo de água são comumente da ordem de quilômetros quadrados, as soluções dos modelos matemáticos exigem malhas computacionais de grandes proporções, ocasionando sérias limitações associadas aos requisitos de memória computacional e tempo de processamento. A fim de contornar estas limitações, métodos numéricos eficientes devem ser empregados na solução do problema em análise. Portanto, métodos iterativos para solução de sistemas não lineares e lineares esparsos de grande porte devem ser utilizados neste tipo de aplicação. Em suma, visto a relevância do tema, esta pesquisa aproximou uma solução para a equação diferencial parcial de Richards pelo método dos volumes finitos em duas dimensões, empregando o método de Picard e Newton com maior eficiência computacional. Para tanto, foram utilizadas técnicas iterativas de resolução de sistemas lineares baseados no espaço de Krylov com matrizes pré-condicionadoras com a biblioteca numérica Portable, Extensible Toolkit for Scientific Computation (PETSc). Os resultados indicam que quando se resolve a equação de Richards considerando-se o método de PICARD-KRYLOV, não importando o modelo de avaliação do solo, a melhor combinação para resolução dos sistemas lineares é o método dos gradientes biconjugados estabilizado mais o pré-condicionador SOR. Por outro lado, quando se utiliza as equações de van Genuchten deve ser optar pela combinação do método dos gradientes conjugados em conjunto com pré-condicionador SOR. Quando se adota o método de NEWTON-KRYLOV, o método gradientes biconjugados estabilizado é o mais eficiente na resolução do sistema linear do passo de Newton, com relação ao pré-condicionador deve-se dar preferência ao bloco Jacobi. Por fim, há evidências que apontam que o método PICARD-KRYLOV pode ser mais vantajoso que o método de NEWTON-KRYLOV, quando empregados na resolução da equação diferencial parcial de Richards.
Resumo:
Métodos de otimização que utilizam condições de otimalidade de primeira e/ou segunda ordem são conhecidos por serem eficientes. Comumente, esses métodos iterativos são desenvolvidos e analisados à luz da análise matemática do espaço euclidiano n-dimensional, cuja natureza é de caráter local. Consequentemente, esses métodos levam a algoritmos iterativos que executam apenas as buscas locais. Assim, a aplicação de tais algoritmos para o cálculo de minimizadores globais de uma função não linear,especialmente não-convexas e multimodais, depende fortemente da localização dos pontos de partida. O método de Otimização Global Topográfico é um algoritmo de agrupamento, que utiliza uma abordagem baseada em conceitos elementares da teoria dos grafos, a fim de gerar bons pontos de partida para os métodos de busca local, a partir de pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem dois objetivos. O primeiro é realizar uma nova abordagem sobre método de Otimização Global Topográfica, onde, pela primeira vez, seus fundamentos são formalmente descritos e suas propriedades básicas são matematicamente comprovadas. Neste contexto, propõe-se uma fórmula semi-empírica para calcular o parâmetro chave deste algoritmo de agrupamento, e, usando um método robusto e eficiente de direções viáveis por pontos-interiores, estendemos o uso do método de Otimização Global Topográfica a problemas com restrições de desigualdade. O segundo objetivo é a aplicação deste método para a análise de estabilidade de fase em misturas termodinâmicas,o qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. A solução deste problema de otimização global é necessária para o cálculo do equilíbrio de fases, que é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Além disso, afim de ter uma avaliação inicial do potencial dessa técnica, primeiro vamos resolver 70 problemas testes, e então comparar o desempenho do método proposto aqui com o solver MIDACO, um poderoso software recentemente introduzido no campo da otimização global.
Resumo:
Neste trabalho de dissertação apresentaremos uma classe de precondicionadores baseados na aproximação esparsa da inversa da matriz de coecientes, para a resolução de sistemas lineares esparsos de grandes portes através de métodos iterativos, mais especificamente métodos de Krylov. Para que um método de Krylov seja eficiente é extremamente necessário o uso de precondicionadores. No contexto atual, onde computadores de arquitetura híbrida são cada vez mais comuns temos uma demanda cada vez maior por precondicionadores paralelizáveis. Os métodos de inversa aproximada que serão descritos possuem aplicação paralela, pois so dependem de uma operação de produto matriz-vetor, que é altamente paralelizável. Além disso, alguns dos métodos também podem ser construídos em paralelo. A ideia principal é apresentar uma alternativa aos tradicionais precondicionadores que utilizam aproximações dos fatores LU, que apesar de robustos são de difícil paralelização.
Resumo:
Os métodos de otimização que adotam condições de otimalidade de primeira e/ou segunda ordem são eficientes e normalmente esses métodos iterativos são desenvolvidos e analisados através da análise matemática do espaço euclidiano n-dimensional, o qual tem caráter local. Esses métodos levam a algoritmos iterativos que são usados para o cálculo de minimizadores globais de uma função não linear, principalmente não-convexas e multimodais, dependendo da posição dos pontos de partida. Método de Otimização Global Topográfico é um algoritmo de agrupamento, o qual é fundamentado nos conceitos elementares da teoria dos grafos, com a finalidade de gerar bons pontos de partida para os métodos de busca local, com base nos pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem como objetivo a aplicação do método de Otimização Global Topográfica junto com um método robusto e eficaz de direções viáveis por pontos-interiores a problemas de otimização que tem restrições de igualdade e/ou desigualdade lineares e/ou não lineares, que constituem conjuntos viáveis com interiores não vazios. Para cada um destes problemas, é representado também um hiper-retângulo compreendendo cada conjunto viável, onde os pontos amostrais são gerados.
Resumo:
Tesis (Maestría en Enseñanza de las Ciencias con Especialidad en Metemáticas