916 resultados para Long memory stochastic process
Resumo:
In recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility (SV) components in order to develop the General Long Memory SV (GLMSV) model. We examine the statistical properties of the new model, suggest using the spectral likelihood estimation for long memory processes, and investigate the finite sample properties via Monte Carlo experiments. We apply the model to three exchange rate return series. Overall, the results of the out-of-sample forecasts show the adequacy of the new GLMSV model.
Resumo:
Neste trabalho propomos o uso de um método Bayesiano para estimar o parâmetro de memória de um processo estocástico com memória longa quando sua função de verossimilhança é intratável ou não está disponível. Esta abordagem fornece uma aproximação para a distribuição a posteriori sobre a memória e outros parâmetros e é baseada numa aplicação simples do método conhecido como computação Bayesiana aproximada (ABC). Alguns estimadores populares para o parâmetro de memória serão revisados e comparados com esta abordagem. O emprego de nossa proposta viabiliza a solução de problemas complexos sob o ponto de vista Bayesiano e, embora aproximativa, possui um desempenho muito satisfatório quando comparada com métodos clássicos.
Resumo:
The detection of long-range dependence in time series analysis is an important task to which this paper contributes by showing that whilst the theoretical definition of a long-memory (or long-range dependent) process is based on the autocorrelation function, it is not possible for long memory to be identified using the sum of the sample autocorrelations, as usually defined. The reason for this is that the sample sum is a predetermined constant for any stationary time series; a result that is independent of the sample size. Diagnostic or estimation procedures, such as those in the frequency domain, that embed this sum are equally open to this criticism. We develop this result in the context of long memory, extending it to the implications for the spectral density function and the variance of partial sums of a stationary stochastic process. The results are further extended to higher order sample autocorrelations and the bispectral density. The corresponding result is that the sum of the third order sample (auto) bicorrelations at lags h,k≥1, is also a predetermined constant, different from that in the second order case, for any stationary time series of arbitrary length.
Resumo:
The paper develops a novel realized matrix-exponential stochastic volatility model of multivariate returns and realized covariances that incorporates asymmetry and long memory (hereafter the RMESV-ALM model). The matrix exponential transformation guarantees the positivedefiniteness of the dynamic covariance matrix. The contribution of the paper ties in with Robert Basmann’s seminal work in terms of the estimation of highly non-linear model specifications (“Causality tests and observationally equivalent representations of econometric models”, Journal of Econometrics, 1988, 39(1-2), 69–104), especially for developing tests for leverage and spillover effects in the covariance dynamics. Efficient importance sampling is used to maximize the likelihood function of RMESV-ALM, and the finite sample properties of the quasi-maximum likelihood estimator of the parameters are analysed. Using high frequency data for three US financial assets, the new model is estimated and evaluated. The forecasting performance of the new model is compared with a novel dynamic realized matrix-exponential conditional covariance model. The volatility and co-volatility spillovers are examined via the news impact curves and the impulse response functions from returns to volatility and co-volatility.
Resumo:
Doctor of Philosophy in Mathematics
Resumo:
This paper proposes a new time-domain test of a process being I(d), 0 < d = 1, under the null, against the alternative of being I(0) with deterministic components subject to structural breaks at known or unknown dates, with the goal of disentangling the existing identification issue between long-memory and structural breaks. Denoting by AB(t) the different types of structural breaks in the deterministic components of a time series considered by Perron (1989), the test statistic proposed here is based on the t-ratio (or the infimum of a sequence of t-ratios) of the estimated coefficient on yt-1 in an OLS regression of ?dyt on a simple transformation of the above-mentioned deterministic components and yt-1, possibly augmented by a suitable number of lags of ?dyt to account for serial correlation in the error terms. The case where d = 1 coincides with the Perron (1989) or the Zivot and Andrews (1992) approaches if the break date is known or unknown, respectively. The statistic is labelled as the SB-FDF (Structural Break-Fractional Dickey- Fuller) test, since it is based on the same principles as the well-known Dickey-Fuller unit root test. Both its asymptotic behavior and finite sample properties are analyzed, and two empirical applications are provided.
Resumo:
This paper studies the electricity hourly load demand in the area covered by a utility situated in the southeast of Brazil. We propose a stochastic model which employs generalized long memory (by means of Gegenbauer processes) to model the seasonal behavior of the load. The model is proposed for sectional data, that is, each hour’s load is studied separately as a single series. This approach avoids modeling the intricate intra-day pattern (load profile) displayed by the load, which varies throughout days of the week and seasons. The forecasting performance of the model is compared with a SARIMA benchmark using the years of 1999 and 2000 as the out-of-sample. The model clearly outperforms the benchmark. We conclude for general long memory in the series.
Resumo:
Fossil pollen data from stratigraphic cores are irregularly spaced in time due to non-linear age-depth relations. Moreover, their marginal distributions may vary over time. We address these features in a nonparametric regression model with errors that are monotone transformations of a latent continuous-time Gaussian process Z(T). Although Z(T) is unobserved, due to monotonicity, under suitable regularity conditions, it can be recovered facilitating further computations such as estimation of the long-memory parameter and the Hermite coefficients. The estimation of Z(T) itself involves estimation of the marginal distribution function of the regression errors. These issues are considered in proposing a plug-in algorithm for optimal bandwidth selection and construction of confidence bands for the trend function. Some high-resolution time series of pollen records from Lago di Origlio in Switzerland, which go back ca. 20,000 years are used to illustrate the methods.
Resumo:
The properties of statistical tests for hypotheses concerning the parameters of the multifractal model of asset returns (MMAR) are investigated, using Monte Carlo techniques. We show that, in the presence of multifractality, conventional tests of long memory tend to over-reject the null hypothesis of no long memory. Our test addresses this issue by jointly estimating long memory and multifractality. The estimation and test procedures are applied to exchange rate data for 12 currencies. Among the nested model specifications that are investigated, in 11 out of 12 cases, daily returns are most appropriately characterized by a variant of the MMAR that applies a multifractal time-deformation process to NIID returns. There is no evidence of long memory.
Resumo:
The properties of an iterative procedure for the estimation of the parameters of an ARFIMA process are investigated in a Monte Carlo study. The estimation procedure is applied to stock returns data for 15 countries. © 2012.
Resumo:
This paper examines whether the observed long memory behavior of log-range series is to some extent spurious and whether it can be explained by the presence of structural breaks. Utilizing stock market data we show that the characterization of log-range series as long memory processes can be a strong assumption. Moreover, we find that all examined series experience a large number of significant breaks. Once the breaks are accounted for, the volatility persistence is eliminated. Overall, the findings suggest that volatility can be adequately represented, at least in-sample, through a multiple breaks process and a short run component.
Resumo:
The properties of statistical tests for hypotheses concerning the parameters of the multifractal model of asset returns (MMAR) are investigated, using Monte Carlo techniques. We show that, in the presence of multifractality, conventional tests of long memory tend to over-reject the null hypothesis of no long memory. Our test addresses this issue by jointly estimating long memory and multifractality. The estimation and test procedures are applied to exchange rate data for 12 currencies. In 11 cases, the exchange rate returns are accurately described by compounding a NIID series with a multifractal time-deformation process. There is no evidence of long memory.
Resumo:
Nesta tese estudamos os efeitos de contágio financeiro e de memória longa causados pelas crises financeiras de 2008 e 2010 em alguns mercados acionistas internacionais. A tese é composta por três ensaios interligados. No Ensaio 1, recorremos à teoria das cópulas para testar a existência de contágio e revelar os canais “investor induced” de transmissão da crise de 2008 aos mercados da Bélgica, França, Holanda e Portugal (grupo NYSE Euronext). Concluímos que existe contágio nestes mercados, que o canal “portfolio rebalancing” é o mecanismo mais importante de transmissão da crise, e que o fenómeno “flight to quality” está presente nos mercados. No Ensaio 2, usando novamente modelos de cópulas, avaliamos os efeitos de contágio provocados pelo mercado acionista grego nos mercados do grupo NYSE Euronext, no contexto da crise de 2010. Os resultados obtidos sugerem que durante a crise de 2010 apenas o mercado português foi objeto de contágio; além disso, conclui-se que os efeitos de contágio provocados pela crise de 2008 são claramente superiores aos efeitos provocados pela crise de 2010. No Ensaio 3, abordamos o tema da memória longa através do estudo do expoente de Hurst dos mercados acionistas da Bélgica, E.U.A., França, Grécia, Holanda, Japão, Reino Unido e Portugal. Verificamos que as propriedades de memória longa dos mercados foram afetadas pelas crises, especialmente a de 2008 – que aumentou a memória longa dos mercados e tornou-os mais persistentes. Finalmente, usando cópulas mais uma vez, verificamos que as crises provocaram, em geral, um aumento na correlação entre os expoentes de Hurst locais dos mercados foco das crises (E.U.A. e Grécia) e os expoentes de Hurst locais dos outros mercados da amostra, sugerindo que o expoente de Hurst pode ser utilizado para detetar efeitos de contágio financeiro. Em síntese, os resultados desta tese sugerem que comparativamente com períodos de acalmia, os períodos de crises financeiras tendem a provocar ineficiência nos mercados acionistas e a conduzi-los na direção da persistência e do contágio financeiro.