986 resultados para Log periodic leaky slots


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An innovative phaseshifterless, wideband, micrustrip leaky-wave antenna with an electronically steerable dual-pencil-beam pattern in the H-plane is presented. The log-periodic geometry of the leaky slots of the antenna results in a wide bandwidth of 25.19%. The Jan beam can he steered up to 14° over the wide resonating band of the anteww. The beam is also steerable at a fixed frequency. by reactivelty loading the slots and a maximum steering angle of about 14° is ohserved. for different capacitor values with an improved bandwidth of 33 _i%. This concept is studied using passive components but it can be extended to varactors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title: Antenna Laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract No. AF33(616)-6079 Project No. 9-(13-6278) Task 40572. Sponsored by: Wright Air Development Center"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many papers claim that a Log Periodic Power Law (LPPL) model fitted to financial market bubbles that precede large market falls or 'crashes', contains parameters that are confined within certain ranges. Further, it is claimed that the underlying model is based on influence percolation and a martingale condition. This paper examines these claims and their validity for capturing large price falls in the Hang Seng stock market index over the period 1970 to 2008. The fitted LPPLs have parameter values within the ranges specified post hoc by Johansen and Sornette (2001) for only seven of these 11 crashes. Interestingly, the LPPL fit could have predicted the substantial fall in the Hang Seng index during the recent global downturn. Overall, the mechanism posited as underlying the LPPL model does not do so, and the data used to support the fit of the LPPL model to bubbles does so only partially. © 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the leaky-mode theory is applied to take into account for the dielectric losses in millimetre waveband inhomogeneous leaky-wave antennas. A practical dielectric-filled cosine-tapered periodic leaky-wave antenna working in the 45GHz band is studied, showing how the desired sidelobes level and directivity are spoilt due to the effect of the losses. An iterative procedure is used to correct the negative effects of the losses in the radiation patterns of the leaky-wave structure. It is also shown the practical limits of the proposed correction approach. The leaky-mode theory is applied for the first time to compensate the losses in a practical leaky-wave antenna in hybrid waveguide printed circuit technology. This leaky-mode theory is validated with full-wave three-dimensional finite element method simulations of the designed antenna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to present how the application of fractal geometry to the elements of a log-periodic array can become a good alternative when one wants to reduce the size of the array. Two types of log-periodic arrays were proposed: one with fed by microstrip line and other fed by electromagnetic coupling. To the elements of these arrays were applied fractal Koch contours, at two levels. In order to validate the results obtained some prototypes were built, which were measured on a vector network analyzer and simulated in a software, for comparison. The results presented reductions of 60% in the total area of the arrays, for both types. By analyzing the graphs of return loss, it was observed that the application of fractal contours made different resonant frequencies appear in the arrays. Furthermore, a good agreement was observed between simulated and measured results. The array with feeding by electromagnetic coupling presented, after application of fractal contours, radiation pattern with more smooth forms than the array with feeding by microstrip line

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application.

The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications.

A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods.

High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed Monte Carlo simulations to investigate the steady-state critical behavior of a one-dimensional contact process with an aperiodic distribution of rates of transition. As in the presence of randomness, spatial fluctuations can lead to changes of critical behavior. For sufficiently weak fluctuations, we give numerical evidence to show that there is no departure from the universal critical behavior of the underlying uniform model. For strong spatial fluctuations, the analysis of the data indicates a change of critical universality class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the mechanisms responsible for the anomalous diffusion is the existence of long-range temporal correlations, for example, Fractional Brownian Motion and walk models according to Elephant memory and Alzheimer profiles, whereas in the latter two cases the walker can always "remember" of his first steps. The question to be elucidated, and the was the main motivation of our work, is if memory of the historic initial is condition for observation anomalous diffusion (in this case, superdiffusion). We give a conclusive answer, by studying a non-Markovian model in which the walkers memory of the past, at time t, is given by a Gaussian centered at time t=2 and standard deviation t which grows linearly as the walker ages. For large widths of we find that the model behaves similarly to the Elephant model; In the opposite limit (! 0), although the walker forget the early days, we observed similar results to the Alzheimer walk model, in particular the presence of amnestically induced persistence, characterized by certain log-periodic oscillations. We conclude that the memory of earlier times is not a necessary condition for the generating of superdiffusion nor the amnestically induced persistence and can appear even in profiles of memory that forgets the initial steps, like the Gausssian memory profile investigated here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-Markovian one-dimensional random walk model is studied with emphasis on the phase-diagram, showing all the diffusion regimes, along with the exactly determined critical lines. The model, known as the Alzheimer walk, is endowed with memory-controlled diffusion, responsible for the model's long-range correlations, and is characterized by a rich variety of diffusive regimes. The importance of this model is that superdiffusion arises due not to memory per se, but rather also due to loss of memory. The recently reported numerically and analytically estimated values for the Hurst exponent are hereby reviewed. We report the finding of two, previously overlooked, phases, namely, evanescent log-periodic diffusion and log-periodic diffusion with escape, both with Hurst exponent H = 1/2. In the former, the log-periodicity gets damped, whereas in the latter the first moment diverges. These phases further enrich the already intricate phase diagram. The results are discussed in the context of phase transitions, aging phenomena, and symmetry breaking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e. g., fractional Brownian motion, Levy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation sigma t which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present novel Terahertz (THz) emitting optically pumped Quantum Dot (QD) photoconductive (PC) materials and antenna structures on their basis both for pulsed and CW pumping regimes. Full text Quantum dot and microantenna design - Presented here are design considerations for the semiconductor materials in our novel QD-based photoconductive antenna (PCA) structures, metallic microantenna designs, and their implementation as part of a complete THz source or transceiver system. Layers of implanted QDs can be used for the photocarrier lifetime shortening mechanism[1,2]. In our research we use InAs:GaAs QD structures of varying dot layer number and distributed Bragg reflector(DBR)reflectivity range. According to the observed dependence of carrier lifetimes on QD layer periodicity [3], it is reasonable to assume that electron lifetimes can be potentially reduced down to 0.45ps in such structures. Both of these features; long excitation wavelength and short carriers lifetime predict possible feasibility of QD antennas for THz generation and detection. In general, relatively simple antenna configurations were used here, including: coplanar stripline (CPS); Hertzian-type dipoles; bow-ties for broadband and log-spiral(LS)or log-periodic(LP)‘toothed’ geometriesfor a CW operation regime. Experimental results - Several lasers are used for antenna pumping: Ti:Sapphire femtosecond laser, as well as single-[4], double-[5] wavelength, and pulsed [6] QD lasers. For detection of the THz signal different schemes and devices were used, e.g. helium-cooled bolometer, Golay cell and a second PCA for coherent THz detection in a traditional time-domain measurement scheme.Fig.1shows the typical THz output power trend from a 5 um-gap LPQD PCA pumped using a tunable QD LD with optical pump spectrum shown in (b). Summary - QD-based THz systems have been demonstrated as a feasible and highly versatile solution. The implementation of QD LDs as pump sources could be a major step towards ultra-compact, electrically controllable transceiver system that would increase the scope of data analysis due to the high pulse repetition rates of such LDs [3], allowing real-time THz TDS and data acquisition. Future steps in development of such systems now lie in the further investigation of QD-based THz PCA structures and devices, particularly with regards to their compatibilitywith QD LDs as pump sources. [1]E. U. Rafailov et al., “Fast quantum-dot saturable absorber for passive mode-locking of solid-State lasers,”Photon.Tech.Lett., IEEE, vol. 16 pp. 2439-2441(2004) [2]E. Estacio, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures. Appl.Phys.Lett., vol. 94 pp. 232104 (2009) [3]C. Kadow et al., “Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett., vol. 75 pp. 3548-3550 (1999) [4]T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett., vol. 101(2012) [5]R. Leyman, D. I. Nikitichev, N. Bazieva, and E. U. Rafailov, “Multimodal spectral control of a quantum-dot diode laser for THz difference frequency generation,” Appl. Phys. Lett., vol. 99 (2011) [6]K.G. Wilcox, M. Butkus, I. Farrer, D.A. Ritchie, A. Tropper, E.U. Rafailov, “Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser, ” Appl. Phys. Lett. Vol 94, 2511 © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have shown evidence of log-periodic behavior in non-hierarchical systems. An interesting fact is the emergence of such properties on rupture and breakdown of complex materials and financial failures. These may be examples of systems with self-organized criticality (SOC). In this work we study the detection of discrete scale invariance or log-periodicity. Theoretically showing the effectiveness of methods based on the Fourier Transform of the log-periodicity detection not only with prior knowledge of the critical point before this point as well. Specifically, we studied the Brazilian financial market with the objective of detecting discrete scale invariance in Bovespa (Bolsa de Valores de S˜ao Paulo) index. Some historical series were selected periods in 1999, 2001 and 2008. We report evidence for the detection of possible log-periodicity before breakage, shown its applicability to the study of systems with discrete scale invariance likely in the case of financial crashes, it shows an additional evidence of the possibility of forecasting breakage