936 resultados para Limit cycles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new algorithm for continuation of limit cycles of autonomous systems as a system parameter is varied. The algorithm works in phase space with an ordered set of points on the limit cycle, along with spline interpolation. Currently popular algorithms in bifurcation analysis packages compute time-domain approximations of limit cycles using either shooting or collocation. The present approach seems useful for continuation near saddle homoclinic points, where it encounters a corner while time-domain methods essentially encounter a discontinuity (a relatively short period of rapid variation). Other phase space-based algorithms use rescaled arclength in place of time, but subsequently resemble the time-domain methods. Compared to these, we introduce additional freedom through a variable stretching of arclength based on local curvature, through the use of an auxiliary index-based variable. Several numerical examples are presented. Comparisons with results from the popular package, MATCONT, are favorable close to saddle homoclinic points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hill, Joe M., Lloyd, Noel G., Pearson, Jane M., 'Centres and limit cycles for an extended Kukles system', Electronic Journal of Differential Equations, Vol. 2007(2007), No. 119, pp. 1-23.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hill, Joe M., Lloyd, Noel G., Pearson, Jane M., 'Limit cycles of a predator-prey model with intratrophic predation', Journal of Mathematical Analysis and Applications Volume 349, Issue 2, 15 January 2009, Pages 544-555

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors M. Bellamy and R.E. Mickens in the article "Hopf bifurcation analysis of the Lev Ginzburg equation" published in Journal of Sound and Vibration 308 (2007) 337-342, claimed that this differential equation in the plane can exhibit a limit cycle. Here we prove that the Lev Ginzburg differential equation has no limit cycles. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)