LIMIT CYCLES of DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/11/2011
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 07/07957-8 Processo FAPESP: 07/08707-5 We study the bifurcation of limit cycles from the periodic orbits of a two-dimensional (resp. four-dimensional) linear center in R(n) perturbed inside a class of discontinuous piecewise linear differential systems. Our main result shows that at most 1 (resp. 3) limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This upper bound is reached. For proving these results, we use the averaging theory in a form where the differentiability of the system is not needed. |
Formato |
3181-3194 |
Identificador |
http://dx.doi.org/10.1142/S0218127411030441 International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 21, n. 11, p. 3181-3194, 2011. 0218-1274 http://hdl.handle.net/11449/8604 10.1142/S0218127411030441 WOS:000298815900007 |
Idioma(s) |
eng |
Publicador |
World Scientific Publ Co Pte Ltd |
Relação |
International Journal of Bifurcation and Chaos |
Direitos |
closedAccess |
Palavras-Chave | #Discontinuous piecewise linear differential systems #Limit cycles #averaging theory |
Tipo |
info:eu-repo/semantics/article |