LIMIT CYCLES of DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS


Autoria(s): Cardin, Pedro Toniol; De Carvalho, Tiago; Llibre, Jaume
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/11/2011

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 07/07957-8

Processo FAPESP: 07/08707-5

We study the bifurcation of limit cycles from the periodic orbits of a two-dimensional (resp. four-dimensional) linear center in R(n) perturbed inside a class of discontinuous piecewise linear differential systems. Our main result shows that at most 1 (resp. 3) limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This upper bound is reached. For proving these results, we use the averaging theory in a form where the differentiability of the system is not needed.

Formato

3181-3194

Identificador

http://dx.doi.org/10.1142/S0218127411030441

International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 21, n. 11, p. 3181-3194, 2011.

0218-1274

http://hdl.handle.net/11449/8604

10.1142/S0218127411030441

WOS:000298815900007

Idioma(s)

eng

Publicador

World Scientific Publ Co Pte Ltd

Relação

International Journal of Bifurcation and Chaos

Direitos

closedAccess

Palavras-Chave #Discontinuous piecewise linear differential systems #Limit cycles #averaging theory
Tipo

info:eu-repo/semantics/article