993 resultados para Large-n Limit
Resumo:
In this work we study the spontaneous breaking of superconformal and gauge invariances in the Abelian N = 1,2 three-dimensional supersymmetric Chern-Simons-matter (SCSM) theories in a large N flavor limit. We compute the Kahlerian effective superpotential at subleading order in 1/N and show that the Coleman-Weinberg mechanism is responsible for the dynamical generation of a mass scale in the N = 1 model. This effect appears due to two-loop diagrams that are logarithmic divergent. We also show that the Coleman-Weinberg mechanism fails when we lift from the N = 1 to the N = 2 SCSM model. (C) 2010 Elsevier B.V All rights reserved.
Resumo:
We show that the energy levels predicted by a frac(1, N)-expansion method for an N-dimensional electron in an anharmonic potential are always lower than the exact energy levels but monotonically converge toward their exact eigenstates for higher ordered corrections. The technique allows a systematic approach for quantum many body problems in a confined potential and explains the remarkable agreement of such approximate theories when compared with numerical results.
Resumo:
We solve the Sp(N) Heisenberg and SU(N) Hubbard-Heisenberg models on the anisotropic triangular lattice in the large-N limit. These two models may describe respectively the magnetic and electronic properties of the family of layered organic materials K-(BEDT-TTF)(2)X, The Heisenberg model is also relevant to the frustrated antiferromagnet, Cs2CuCl4. We find rich phase diagrams for each model. The Sp(N) :antiferromagnet is shown to have five different phases as a function of the size of the spin and the degree of anisotropy of the triangular lattice. The effects of fluctuations at finite N are also discussed. For parameters relevant to Cs2CuCl4 the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The SU(N) Hubbard-Heisenberg model exhibits an insulating dimer phase, an insulating box phase, a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The uniform and SFP phases exhibit a pseudogap, A metal-insulator transition occurs at intermediate values of the interaction strength.
Resumo:
We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α′ expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
International audience
Resumo:
We study the massless scalar, Dirac, and electromagnetic fields propagating on a 4D-brane, which is embedded in higher-dimensional Gauss-Bonnet space-time. We calculate, in the time domain, the fundamental quasinormal modes of a spherically symmetric black hole for such fields. Using WKB approximation we study quasinormal modes in the large multipole limit. We observe also a universal behavior, independent on a field and value of the Gauss-Bonnet parameter, at an asymptotically late time.
Resumo:
We consider the electronic properties of layered molecular crystals of the type theta -D(2)A where A is an anion and D is a donor molecule such as bis-(ethylenedithia-tetrathiafulvalene) (BEDT-TTF), which is arranged in the theta -type pattern within the layers. We argue that the simplest strongly correlated electron model that can describe the rich phase diagram of these materials is the extended Hubbard model on the square lattice at one-quarter filling. In the limit where the Coulomb repulsion on a single site is large, the nearest-neighbor Coulomb repulsion V plays a crucial role. When V is much larger than the intermolecular hopping integral t the ground state is an insulator with charge ordering. In this phase antiferromagnetism arises due to a novel fourth-order superexchange process around a plaquette on the square lattice. We argue that the charge ordered phase is destroyed below a critical nonzero value V, of the order of t. Slave-boson theory is used to explicitly demonstrate this for the SU(N) generalization of the model, in the large-N limit. We also discuss the relevance of the model to the all-organic family beta-(BEDT-TTF)(2)SF5YSO3 where Y=CH2CF2, CH2, CHF.
Resumo:
We examine a multiple-access communication system in which multiuser detection is performed without knowledge of the number of active interferers. Using a statistical-physics approach, we compute the single-user channel capacity and spectral efficiency in the large-system limit.
Resumo:
We propose a criterion for the validity of semiclassical gravity (SCG) which is based on the stability of the solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point quantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctuations. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. The homogeneous solutions of the Einstein-Langevin equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations, which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only be obtained from the Einstein-Langevin equation (the inhomogeneous term). These equations exhibit runaway solutions with exponential instabilities. A detailed discussion about different methods to deal with these instabilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based on SCG is a valid approximation in that case.
Resumo:
We investigate the influence of vacuum polarization of quantum massive fields on the scalar sector of quasinormal modes in spherically symmetric black holes. We consider the evolution of a massless scalar field on the space-time corresponding to a charged semiclassical black hole, consisting of the quantum-corrected geometry of a Reissner-Nordstrom black hole dressed by a quantum massive scalar field in the large mass limit. Using a sixth order WKB approach we find a shift in the quasinormal mode frequencies due to vacuum polarization.
Resumo:
A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distributions of the block spin variable X(gamma), normalized with exponents gamma = d + 2 and gamma=d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L(d) in the limit L down arrow 1 and N ->infinity. Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee-Yang zeroes. The large-N limit of RG transformation with L(d) fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe (J. Stat. Phys. 115:1669-1713, 2004) . Although our analysis deals only with N = infinity case, it complements various aspects of that work.
Resumo:
We introduce and study new integrable models (IMs) of An (1)-nonabelian Toda type which admit U(1) ⊗ U(1) charged topological solitons. They correspond to the symmetry breaking SU(n + 1) → SU(2) ⊗ SU(2) ⊗ U(1)n-2 and are conjectured to describe charged dyonic domain walls of N = 1 SU(n + 1) SUSY gauge theory in large n limit. It is shown that this family of relativistic IMs corresponds to the first negative grade q = -1 member of a dyonic hierarchy of generalized cKP type. The explicit relation between the 1-soliton solutions (and the conserved charges as well) of the IMs of grades q = -1 and q = 2 is found. The properties of the IMs corresponding to more general symmetry breaking SU(n + 1) → SU(2)⊗p ⊗ U(1)n-p as well as IM with global SU(2) symmetries are discussed. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Our previous results on the nonperturbative calculations of the mean current and of the energy-momentum tensor in QED with the T-constant electric field are generalized to arbitrary dimensions. The renormalized mean values are found, and the vacuum polarization contributions and particle creation contributions to these mean values are isolated in the large T limit; we also relate the vacuum polarization contributions to the one-loop effective Euler-Heisenberg Lagrangian. Peculiarities in odd dimensions are considered in detail. We adapt general results obtained in 2 + 1 dimensions to the conditions which are realized in the Dirac model for graphene. We study the quantum electronic and energy transport in the graphene at low carrier density and low temperatures when quantum interference effects are important. Our description of the quantum transport in the graphene is based on the so-called generalized Furry picture in QED where the strong external field is taken into account nonperturbatively; this approach is not restricted to a semiclassical approximation for carriers and does not use any statistical assumptions inherent in the Boltzmann transport theory. In addition, we consider the evolution of the mean electromagnetic field in the graphene, taking into account the backreaction of the matter field to the applied external field. We find solutions of the corresponding Dirac-Maxwell set of equations and with their help we calculate the effective mean electromagnetic field and effective mean values of the current and the energy-momentum tensor. The nonlinear and linear I-V characteristics experimentally observed in both low-and high-mobility graphene samples are quite well explained in the framework of the proposed approach, their peculiarities being essentially due to the carrier creation from the vacuum by the applied electric field. DOI: 10.1103/PhysRevD.86.125022
Resumo:
We investigate the effects of quenched disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong-disorder renormalization group, we demonstrate that quenched disorder rounds the first-order quantum phase transition to a continuous one for both weak and strong coupling between the colors. In the strong-coupling case, we find a distinct type of infinite-randomness critical point characterized by additional internal degrees of freedom. We investigate its critical properties in detail and find stronger thermodynamic singularities than in the random transverse field Ising chain. We also discuss the implications for higher spatial dimensions as well as unusual aspects of our renormalization-group scheme. DOI: 10.1103/PhysRevB.86.214204