Tau Functions and the Limit of Block Toeplitz Determinants
Contribuinte(s) |
Laboratoire Angevin de REcherche en MAthématiques (LAREMA) ; Centre National de la Recherche Scientifique (CNRS) - Université d'Angers (UA) |
---|---|
Data(s) |
2015
|
Resumo |
International audience <p>A classical way to introduce tau functions for integrable hierarchies of solitonic equations is by means of the Sato–Segal–Wilson infinite-dimensional Grassmannian. Every point in the Grassmannian is naturally related to a Riemann–Hilbert problem on the unit circle, for which Bertola proposed a tau function that generalizes the Jimbo–Miwa–Ueno tau function for isomonodromic deformation problems. In this paper, we prove that the Sato–Segal–Wilson tau function and the (generalized) Jimbo–Miwa–Ueno iso- monodromic tau function coincide under a very general setting, by identifying each of them to the large-size limit of a block Toeplitz determinant. As an application, we give a new definition of tau function for Drinfeld–Sokolov hierarchies (and their generalizations) by means of infinite-dimensional Grassmannians, and clarify their relation with other tau functions given in the literature.</p> |
Identificador |
hal-01392114 https://hal.archives-ouvertes.fr/hal-01392114 DOI : 10.1093/imrn/rnu262 OKINA : ua12559 |
Idioma(s) |
en |
Publicador |
HAL CCSD Oxford University Press (OUP) |
Relação |
info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnu262 |
Fonte |
ISSN: 1073-7928 EISSN: 1687-0247 International Mathematics Research Notices https://hal.archives-ouvertes.fr/hal-01392114 International Mathematics Research Notices, Oxford University Press (OUP), 2015, 2015 (20), pp.10339-10366. <http://imrn.oxfordjournals.org/content/2015/20/10339>. <10.1093/imrn/rnu262> http://imrn.oxfordjournals.org/content/2015/20/10339 |
Palavras-Chave | #[MATH] Mathematics [math] |
Tipo |
info:eu-repo/semantics/article Journal articles |