934 resultados para Kinetics And Modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rosin is a natural product from pine forests and it is used as a raw material in resinate syntheses. Resinates are polyvalent metal salts of rosin acids and especially Ca- and Ca/Mg- resinates find wide application in the printing ink industry. In this thesis, analytical methods were applied to increase general knowledge of resinate chemistry and the reaction kinetics was studied in order to model the non linear solution viscosity increase during resinate syntheses by the fusion method. Solution viscosity in toluene is an important quality factor for resinates to be used in printing inks. The concept of critical resinate concentration, c crit, was introduced to define an abrupt change in viscosity dependence on resinate concentration in the solution. The concept was then used to explain the non-inear solution viscosity increase during resinate syntheses. A semi empirical model with two estimated parameters was derived for the viscosity increase on the basis of apparent reaction kinetics. The model was used to control the viscosity and to predict the total reaction time of the resinate process. The kinetic data from the complex reaction media was obtained by acid value titration and by FTIR spectroscopic analyses using a conventional calibration method to measure the resinate concentration and the concentration of free rosin acids. A multivariate calibration method was successfully applied to make partial least square (PLS) models for monitoring acid value and solution viscosity in both mid-infrared (MIR) and near infrared (NIR) regions during the syntheses. The calibration models can be used for on line resinate process monitoring. In kinetic studies, two main reaction steps were observed during the syntheses. First a fast irreversible resination reaction occurs at 235 °C and then a slow thermal decarboxylation of rosin acids starts to take place at 265 °C. Rosin oil is formed during the decarboxylation reaction step causing significant mass loss as the rosin oil evaporates from the system while the viscosity increases to the target level. The mass balance of the syntheses was determined based on the resinate concentration increase during the decarboxylation reaction step. A mechanistic study of the decarboxylation reaction was based on the observation that resinate molecules are partly solvated by rosin acids during the syntheses. Different decarboxylation mechanisms were proposed for the free and solvating rosin acids. The deduced kinetic model supported the analytical data of the syntheses in a wide resinate concentration region, over a wide range of viscosity values and at different reaction temperatures. In addition, the application of the kinetic model to the modified resinate syntheses gave a good fit. A novel synthesis method with the addition of decarboxylated rosin (i.e. rosin oil) to the reaction mixture was introduced. The conversion of rosin acid to resinate was increased to the level necessary to obtain the target viscosity for the product at 235 °C. Due to a lower reaction temperature than in traditional fusion synthesis at 265 °C, thermal decarboxylation is avoided. As a consequence, the mass yield of the resinate syntheses can be increased from ca. 70% to almost 100% by recycling the added rosin oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of addition of maltodextrin on drying kinetics of drops containing fructose, glucose, sucrose and citric acid individually and in mixtures was studied experimentally using single drop drying experiments and numerically by solving appropriate mass and heat transfer equations. The numerical predictions agreed with the experimental moisture and temperature histories within 5-6% average relative (absolute) errors and average differences of +/- 1degreesC, respectively. The stickiness of these drops was determined using the glass transition temperature (T-g) of the drops' surface layer as an indicator. The experimental stickiness histories followed the model predictions with reasonable accuracy. A safe drying (non-sticky) regime in a spray drying environment has been proposed, and used to estimate the optimum amount of addition of maltodextrin for successful spray drying of 120 micron diameter droplets of fruit juices. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comprehensive and critical review of the mechanisms and kinetics of NO and N2O reduction reaction with coal chars under fluidised-bed combustion conditions (FBC). The heterogeneous reactions of NO and N2O with char/carbon surface have been well recognised as the most important processes in reducing both NOx and N2O in situ FBC. Compared to NO-carbon reactions in FBC, the reactions of N2O with chars have been relatively less understood and studied. Beginning with the overall reaction schemes for both NO and N2O reduction, the paper extensively discusses the reaction mechanisms including the effects of active surface sites. Generally, NO- and N2O-carbon reactions follow a series of step reactions. However, questions remain concerning the role of adsorbed phases of NO and N2O, and the behaviour of different surface sites. Important kinetics factors such as the rate expressions, kinetics parameters as well as the effects of surface area and pore structure are discussed in detail. The main factors influencing the reduction of NO and N2O in FBC conditions are the chemical and physical properties of chars, and the operating parameters of FBC such as temperature, presence of CO, O-2 and pressure. It is shown that under similar conditions, N2O is more readily reduced on the char surface than NO. Temperature was found to be a very important parameter in both NO and N2O reduction. It is generally agreed that both NO- and N2O-carbon reactions follow first-order reaction kinetics with respect to the NO and N2O concentrations. The kinetic parameters for NO and N2O reduction largely depend on the pore structure of chars. The correlation between the char surface area and the reactivities of NO/N2O-char reactions is considered to be of great importance to the determination of the reaction kinetics. The rate of NO reduction by chars is strongly enhanced by the presence of CO and O-2, but these species may not have significant effects on the rate of N2O reduction. However, the presence of these gases in FBC presents difficulties in the study of kinetics since CO cannot be easily eliminated from the carbon surface. In N2O reduction reactions, ash in chars is found to have significant catalytic effects, which must be accounted for in the kinetic models and data evaluation. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crumpets are made by heating fermented batter on a hot plate at around 230°C. The characteristic structure dominated by vertical pores develops rapidly: structure has developed throughout around 75% of the product height within 30s, which is far faster than might be expected from transient heat conduction through the batter. Cooking is complete within around 3 min. Image analysis based on results from X-ray tomography shows that the voidage fraction is approximately constant and that there is continual coalescence between the larger pores throughout the product although there is also a steady level of small bubbles trapped within the solidified batter. We report here experimental studies which shed light on some of the mechanisms responsible for this structure, together with some models of key phenomena.Three aspects are discussed here: the role of gas (carbon dioxide and nitrogen) nuclei in initiating structure development; convective heat transfer inside the developing pores; and the kinetics of setting the batter into an elastic solid structure. It is shown conclusively that the small bubbles of carbon dioxide resulting from the fermentation stage play a crucial role as nuclei for pore development: without these nuclei, the result is not a porous structure, but rather a solid, elastic, inedible, gelatinized product. These nuclei are also responsible for the tiny bubbles which are set in the final product. The nuclei form the source of the dominant pore structure which is largely driven by the, initially explosive, release of water vapour from the batter together with the desorption of dissolved carbon dioxide. It is argued that the rapid evaporation, transport and condensation of steam within the growing pores provides an important mechanism, as in a heat pipe, for rapid heat transfer, and models for this process are developed and tested. The setting of the continuous batter phase is essential for final product quality: studies using differential scanning calorimetry and on the kinetics of change in the visco-elastic properties of the batter suggest that this process is driven by the kinetics of gelatinization. Unlike many thermally driven food processes the rates of heating are such that gelatinization kinetics cannot be neglected. The implications of these results for modelling and for the development of novel structures are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the corrosion kinetics and surface topography of Ti-6Al-4V alloy exposed to mouthwash solutions (0.12% chlorhexidine digluconate, 0.053% cetylpyridinium chloride and 3% hydrogen peroxide) compared to artificial saliva (pH6.5) (control). Twenty Ti-6Al-4V alloy disks were used and divided into 4 groups (n=5). For the electrochemical assay, standard tests as open circuit potential and electrochemical impedance spectroscopy (EIS) were applied at baseline, 7 and 14days after immersion in the solutions. Scanning electron microscopy, atomic force microscopy and profilometry (average roughness - Ra) were used for surface characterization. Total weight loss of disks was calculated. Data were analyzed by ANOVA and Bonferroni's test (α=0.05). Hydrogen peroxide generated the lowest polarization resistance (Rp) values for all periods (P<0.05). For the capacitance (Cdl), similar results were observed among groups at baseline (P=0.098). For the 7 and 14-day periods, hydrogen peroxide promoted the highest Cdl values (P<0.0001). Hydrogen peroxide promoted expressive superficial changes and greater Ra values than the others (P<0.0001). It could be concluded that solutions containing cetylpyridinium chloride and chlorhexidine digluconate might be the mouthwashes of choice during the post-operatory period of dental implants. However, hydrogen peroxide is counter-indicated in these situations. Further studies evaluating the dynamics of these solutions (tribocorrosion) and immersing the disks in daily cycles (two or three times a day) to mimic a clinical situation closest to the application of mouthwashes in the oral cavity are warranted to prove our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine if the carbohydrate (CHO) availability alters the rate of increase in the rating of perceived exertion (RPE) during high intensity exercise and whether this would be associated with physiological changes. Six males performed high intensity exercise after 48 h of controlled, high CHO (80%) and low CHO (10%) diets. Time to exhaustion was lower in the low compared to high CHO diet. The rate of increase in RPE was greater and the VO(2) slow component was lower in the low CHO diet than in the control. There was no significant condition effect for cortisol, insulin, pH, plasma glucose, potassium, or lactate concentrations. Multiple linear regression indicated that the total amplitude of VO(2) and perceived muscle strain accounted for the greatest variance in the rate of increase in RPE. These results suggest that cardiorespiratory variables and muscle strain are important afferent signals from the periphery for the RPE calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the relentless quest for improved performance driving ever tighter tolerances for manufacturing, machine tools are sometimes unable to meet the desired requirements. One option to improve the tolerances of machine tools is to compensate for their errors. Among all possible sources of machine tool error, thermally induced errors are, in general for newer machines, the most important. The present work demonstrates the evaluation and modelling of the behaviour of the thermal errors of a CNC cylindrical grinding machine during its warm-up period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the ethoxylation of fatty alcohols catalyzed by potassium hydroxide was studied to obtain the rate constants for modeling of the industrial process. Experimental data obtained in a lab-scale semibatch autoclave reactor were used to evaluate kinetic and equilibrium parameters. The kinetic model was employed to model the performance of an industrial-scale spray tower reactor for fatty alcohol ethoxylation. The reactor model considers that mass transfer and reaction occur independently in two distinct zones of the reactor. Good agreement between the model predictions and real data was found. These findings confirm the reliability of the kinetic and reactor model for simulating fatty alcohol ethoxylation processes under industrial conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple calorimetric method to estimate both kinetics and heat transfer coefficients using temperature-versus-time data under non-adiabatic conditions is described for the reaction of hydrolysis of acetic anhydride. The methodology is applied to three simple laboratory-scale reactors in a very simple experimental setup that can be easily implemented. The quality of the experimental results was verified by comparing them with literature values and with predicted values obtained by energy balance. The comparison shows that the experimental kinetic parameters do not agree exactly with those reported in the literature, but provide a good agreement between predicted and experimental data of temperature and conversion. The differences observed between the activation energy obtained and the values reported in the literature can be ascribed to differences in anhydride-to-water ratios (anhydride concentrations). (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental processes have been modelled for decades. However. the need for integrated assessment and modeling (IAM) has,town as the extent and severity of environmental problems in the 21st Century worsens. The scale of IAM is not restricted to the global level as in climate change models, but includes local and regional models of environmental problems. This paper discusses various definitions of IAM and identifies five different types of integration that Lire needed for the effective solution of environmental problems. The future is then depicted in the form of two brief scenarios: one optimistic and one pessimistic. The current state of IAM is then briefly reviewed. The issues of complexity and validation in IAM are recognised as more complex than in traditional disciplinary approaches. Communication is identified as a central issue both internally among team members and externally with decision-makers. stakeholders and other scientists. Finally it is concluded that the process of integrated assessment and modelling is considered as important as the product for any particular project. By learning to work together and recognise the contribution of all team members and participants, it is believed that we will have a strong scientific and social basis to address the environmental problems of the 21st Century. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gamma-aminobutyric acid type A (GABA(A)) receptor mediates fast inhibitory synaptic transmission in the CNS. Dysfunction of the GABA(A) receptor would be expected to cause neuronal hyperexcitability, a phenomenon linked with epileptogenesis. We have investigated the functional consequences of an arginine-to-glutamine mutation at position 43 within the GABA(A) gamma(2)-subunit found in a family with childhood absence epilepsy and febrile seizures. Rapid-application experiments performed on receptors expressed in HEK-293 cells demonstrated that the mutation slows GABA(A) receptor deactivation and increases the rate of desensitization, resulting in an accumulation of desensitized receptors during repeated, short applications. In Xenopus laevis oocytes, two-electrode voltage-clamp analysis of steady-state currents obtained from alpha(1)beta(2)gamma(2) or alpha(1)beta(2)gamma(2)(R43Q) receptors did not reveal any differences in GABA sensitivity. However, differences in the benzodiazepine pharmacology of mutant receptors were apparent. Mutant receptors expressed in oocytes displayed reduced sensitivity to diazepam and flunitrazepam but not the imiclazopyricline zolpidem. These results provide evidence of impaired GABA(A) receptor function that could decrease the efficacy of transmission at inhibitory synapses, possibly generating a hyperexcitable neuronal state in thalamocortical networks of epileptic patients possessing the mutant subunit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to unsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment. The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.