981 resultados para Kinetic mechanism
Resumo:
The kinetic mechanism for the interaction of D-cycloserine with serine hydroxymethyltransferase (EC2.1.2.1) from sheep liver was established by measuring changes in the activity, absorbance, and circular dichoism (CD) of the enzyme. The irreversible inhibition of the enzyme was characterized by three detectable steps: an initial rapid step followed by two successive steps with rate constants of 5.4 X s-l and 1.4 X lo4 s-l. The first step was distinguished by a rapid disappearance of the enzyme absorbance peak at 425 nm, a decrease in the enzyme activity to 25% of the uninhibited velocity, and a lowering of the CD intensity at 432 nm to about 65% of the original value. The second step of the interaction was accompanied by a complete loss of enzyme.
Resumo:
5,10-Methylenetetrahydrofolate reductase (EC 1.1.1.68) was purified from the cytosolic fraction of sheep liver by (NH4)2 SO4 fractionation, acid precipitation, DEAE-Sephacel chromatography and Blue Sepharose affinity chromatography. The homogeneity of the enzyme was established by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, ultracentrifugation and Ouchterlony immunodiffusion test. The enzyme was a dimer of molecular weight 1,66,000 ± 5,000 with a subunit molecular weight of 87,000 ±5,000. The enzyme showed hyperbolic saturation pattern with 5-methyltetrahydrofolate.K 0.5 values for 5-methyltetrahydrofolate menadione and NADPH were determined to be 132 ΜM, 2.45 ΜM and 16 ΜM. The parallel set of lines in the Lineweaver-Burk plot, when either NADPH or menadione was varied at different fixed concentrations of the other substrate; non-competitive inhibition, when NADPH was varied at different fixed concentrations of NADP; competitive inhibition, when menadione was varied at different fixed concentrations of NADP and the absence of inhibition by NADP at saturating concentration of menadione, clearly established that the kinetic mechanism of the reaction catalyzed by this enzyme was ping-pong.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Myosin V is an unconventional myosin proposed to be processive on actin filaments, analogous to kinesin on a microtubule [Mehta, A. D., et al. (1999) Nature (London) 400, 590–593]. To ascertain the unique properties of myosin V that permit processivity, we undertook a detailed kinetic analysis of the myosin V motor. We expressed a truncated, single-headed myosin V construct that bound a single light chain to study its innate kinetics, free from constraints imposed by other regions of the molecule. The data demonstrate that unlike any previously characterized myosin a single-headed myosin V spends most of its kinetic cycle (>70%) strongly bound to actin in the presence of ATP. This kinetic tuning is accomplished by increasing several of the rates preceding strong binding to actin and concomitantly prolonging the duration of the strongly bound state by slowing the rate of ADP release. The net result is a myosin unlike any previously characterized, in that ADP release is the rate-limiting step for the actin-activated ATPase cycle. Thus, because of a number of kinetic adaptations, myosin V is tuned for processive movement on actin and will be capable of transporting cargo at lower motor densities than any other characterized myosin.
Resumo:
A vast amount of literature has accumulated on the characterization of DNA methyltransferases. The HhaI DNA methyltransferase, a C5-cytosine methyltransferase, has been the subject of investigation for the last 2 decades. Biochemical and kinetic characterization have led to an understanding of the catalytic and kinetic mechanism of the methyltransfer reaction. The HhaI methyltransferase has also been subjected to extensive structural analysis, with the availability of 12 structures with or without a cofactor and a variety of DNA substrates. The mechanism of base flipping, first described for the HhaI methyltransferase, is conserved among all DNA methyltransferases and is also found to occur in numerous DNA repair enzymes. Studies with other methyltransferase reveal a significant structural and functional similarity among different types of methyltransferases. This review aims to summarize the available information on the HhaI DNA methyltransferase.
Resumo:
In this study a 5-step reduced chemical kinetic mechanism involving nine species is developed for combustion of Blast Furnace Gas (BFG), a multi-component fuel containing CO/H2/CH4/CO2, typically with low hydrogen, methane and high water fractions, for conditions relevant for stationary gas-turbine combustion. This reduced mechanism is obtained from a 49-reaction skeletal mechanism which is a modified subset of GRI Mech 3.0. The skeletal and reduced mechanisms are validated for laminar flame speeds, ignition delay times and flame structure with available experimental data, and using computational results with a comprehensive set of elementary reactions. Overall, both the skeletal and reduced mechanisms show a very good agreement over a wide range of pressure, reactant temperature and fuel mixture composition. © 2012 The Combustion Institute..
Resumo:
Positronium formation in the bimary molecular solid solutions Tb1-xEux (dpm)(3) (dpm = dipivaloylmethanate) has been investigated. A strong linear correlation between the D-5(4) Tb(III) energy level excited state lifetime and the positronium formation probability has been observed. This correlation indicates that the ligand-to-metal charge transfer LMCT states act in both luminescence quenching and positronium formation inhibition, as previously proposed. A kinetic mechanism is proposed to explain this correlation and shows that excited electronic states have a very important role in the positronium formation mechanism.
Resumo:
The steady state kinetic mechanism of the H(2)O(2)-supported oxidation of different organic substrates by peroxidase from leaves of Chamaerops excelsa palm trees (CEP) has been investigated. An analysis of the initial rates vs. H(2)O(2) and reducing substrate concentrations is consistent with a substrate-inhibited Ping-Pong Bi Bi reaction mechanism. The phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and leads to an interpretation of the effects in terms of the kinetic parameters K(m)(H2O2)center dot K(m)(AH2)center dot k(cat)center dot K(SI)(AH2) and of the microscopic rate constants k(1) and k(3) of the shared three-step catalytic cycle of peroxidases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Cessation of transcription at specific terminator DNA sequences is used by viruses, bacteria, and eukaryotes to regulate the expression of downstream genes, but the mechanisms of transcription termination are poorly characterized. To elucidate the kinetic mechanism of termination at the intrinsic terminators of enteric bacteria, we observed, by using single-molecule light microscopy techniques, the behavior of surface-immobilized Escherichia coli RNA polymerase (RNAP) molecules in vitro. An RNAP molecule remains at a canonical intrinsic terminator for ≈64 s before releasing DNA, implying the formation of an elongation-incompetent (paused) intermediate by transcription complexes that terminate but not by those that read through the terminator. Analysis of pause lifetimes establishes a complete minimal mechanism of termination in which paused intermediate formation is both necessary and sufficient to induce release of RNAP at the terminator. The data suggest that intrinsic terminators function by a nonequilibrium process in which terminator effectiveness is determined by the relative rates of nucleotide addition and paused state entry by the transcription complex.
Resumo:
Chaperonins prevent the aggregation of partially folded or misfolded forms of a protein and, thus, keep it competent for productive folding. It was suggested that GroEL, the chaperonin of Escherichia coli, exerts this function 1 unfolding such intermediates, presumably in a catalytic fashion. We investigated the kinetic mechanism of GroEL-induced protein unfolding by using a reduced and carbamidomethylated variant of RNase T1, RCAM-T1, as a substrate. RCAM-T1 cannot fold to completion, because the two disulfide bonds are missing, and it is, thus, a good model for long-lived folding intermediates. RCAM-T1 unfolds when GroEL is added, but GroEL does not change the microscopic rate constant of unfolding, ruling out that it catalyzes unfolding. GroEL unfolds RCAM-T1 because it binds with high affinity to the unfolded form of the protein and thereby shifts the overall equilibrium toward the unfolded state. GroEL can unfold a partially folded or misfolded intermediate by this thermodynamic coupling mechanism when the Gibbs free energy of the binding to GroEL is larger than the conformational stability of the intermediate and when the rate of its unfolding is high.
Resumo:
An unusual intermediate bound to the enzyme was detected in the interaction of thiosemicarbazide with sheep liver serine hydroxymethyltransferase. This intermediate had absorbance maxima at 464 and 440 nm. Such spectra are characteristic of resonance stabilized intermediates detected in the interaction of substrates and quasi-substrates with pyridoxal phosphate enzymes. An intermediate of this kind has not been detected in the interaction of thiosemicarbazide with other pyridoxal phosphate enzymes. This intermediate was generated slowly (t 1/2 = 4 min) following the addition of thiosemicarbazide (200 microM) to sheep liver serine hydroxymethyltransferase (5 microM). It was bound to the enzyme as evidenced by circular dichroic bands at 464 and 440 nm and the inability to be removed upon Centricon filtration. The kinetics of interaction revealed that thiosemicarbazide was a slow binding reversible inhibitor in this phase with a k(on) of 11 M-1 s-1 and a k(off) of 5 x 10(-4) s-1. The intermediate was converted very slowly (k = 4 x 10(-5) s-1) to the final products, namely the apoenzyme and the thiosemicarbazone of pyridoxal phosphate. A minimal kinetic mechanism involving the initial conversion to the intermediate absorbing at longer wavelengths and the conversion of this intermediate to the final product, as well as, the formation of pyridoxal phosphate-thiosemicarbazone directly by an alternate pathway is proposed.
Resumo:
The RecA intein of Mycobacterium tuberculosis, a novel double-stranded DNA endonuclease, requires both Mn(2+) and ATP for efficient cleavage of the inteinless recA allele. In this study, we show that Mg(2+) alone was sufficient to stimulate PI-MtuI to cleave double-stranded DNA at ectopic sites. In the absence of Mg(2+), PI-MtuI formed complexes with topologically different forms of DNA containing ectopic recognition sequences with equal affinity but failed to cleave DNA. We observed that PI-MtuI was able to inflict double-strand breaks robustly within the ectopic recognition sequence to generate either a blunt end or 1-2-nucleotide 3'-hydroxyl overhangs. Mutational analyses of the presumptive metal ion-binding ligands (Asp(122), Asp(222), and Glu(220)) together with immunoprecipitation assays provided compelling evidence to link both the Mg(2+)- and Mn(2+) and ATP-dependent endonuclease activities to PI-MtuI. The kinetic mechanism of PI-MtuI promoted cleavage of ectopic DNA sites proceeded through a sequential mechanism with transient accumulation of nicked circular duplex DNA as an intermediate. Together, these data suggest that PI-MtuI, like group II introns, might mediate ectopic DNA transposition and hence its lateral transfer in natural populations.
Resumo:
Aqueous phase oxidation of sulphur dioxide at low concentrations catalysed by a PVP-Cu complex in the solid phase and dissolved Cu(II) in the liquid phase is studied in a rotating catalyst basket reactor (RCBR). The equilibrium adsorption of Cu(II) and S(VI) on PVP particles is found to be of the Langmuir-type. The diffusional effects of S(IV) species in PVP-Cu resin are found to be insignificant whereas that of product S(VI) are found to be significant. The intraparticle diffusivity of S(VI) is obtained from independent tracer experiments. In the oxidation reaction HSO3- is the reactive species. Both the S(IV) species in the solution, namely SO2(aq) and HSO3- get adsorbed onto the active PVP-Cu sites of the catalyst, but only HSO3- undergoes oxidation. A kinetic mechanism is proposed based on this feature which shows that SO2(aq) has a deactivating effect on the catalyst. A rate model is developed for the three-phase reaction system incorporating these factors along with the effect of concentration of H2SO4 on the solubility of SO2 in the dilute aqueous solutions of Cu(II). Transient oxidation experiments are conducted at different conditions of concentration of SO2 and O-2 in the gas phase and catalyst concentration, and the rate parameters are estimated from the data. The observed and calculated profiles are in very good agreement. This confirms the deactivating effect of nonreactive SO2(aq) on the heterogeneous catalysis.
Resumo:
Stolzite polymorph of PbWO4 catalyst was prepared by the facile room temperature precipitation method. Structural parameters were refined by the Rietveld analysis using powder X-ray data. PbWO4 was crystallized in the scheelite-type tetragonal structure with space group I4(1)/a (No. 88). Field emission scanning electron microscopy revealed leaf like morphology. Photoluminescence spectra exhibit broad blue emission (425 nm) under the excitation of 356 nm. The photocatalytic degradation of Methylene blue, Rhodamine B and Methyl orange dyes were measured under visible illumination. The 100% dye degradation was observed for MB and RhB dyes within 60 and 105 min. The rate constant was found to be in the decreasing order of MB > RhB > MO which followed the 1st order kinetic mechanism. Therefore, PbWO4 can be a potential candidate for blue component in white LEDs and also acts as a catalyst for the treatment of toxic and non-biodegradable organic pollutants in water. (C) 2014 Elsevier B.V. All rights reserved.