25 resultados para KBC SUBALGEBRA
Resumo:
Using the elements of the so-called KBc gamma subalgebra, we study a class of analytic solutions depending on a single function F(K) in the modified cubic superstring field theory. We compute the energy associated to these solutions and show that the result can be expressed in terms of a contour integral. For a particular choice of the function F(K), we show that the energy is given by integer multiples of a single D-brane tension.
Resumo:
Negative potassium (K) balances in all broadacre grain cropping systems in northern Australia are resulting in a decline in the plant-available reserves of K and necessitating a closer examination of strategies to detect and respond to developing K deficiency in clay soils. Grain growers on the Red Ferrosol soils have increasingly encountered K deficiency over the last 10 years due to lower available K reserves in these soils in their native condition. However, the problem is now increasingly evident on the medium-heavy clay soils (Black and Grey Vertosols) and is made more complicated by the widespread adoption of direct drill cropping systems and the resulting strong strati. cation of available K reserves in the top 0.05-0.1 m of the soil pro. le. This paper reports glasshouse studies examining the fate of applied K fertiliser in key cropping soils of the inland Burnett region of south-east Queensland, and uses the resultant understanding of K dynamics to interpret results of field trials assessing the effectiveness of K application strategies in terms of K availability to crop plants. At similar concentrations of exchangeable K (K-exch), soil solution K concentrations and activity of K in the soil solution (AR(K)) varied by 6-7-fold between soil types. When K-exch arising from different rates of fertiliser application was expressed as a percentage of the effective cation exchange capacity (i.e. K saturation), there was evidence of greater selective adsorption of K on the exchange complex of Red Ferrosols than Black and Grey Vertosols or Brown Dermosols. Both soil solution K and AR(K) were much less responsive to increasing K-exch in the Black Vertosols; this is indicative of these soils having a high K buffer capacity (KBC). These contrasting properties have implications for the rate of diffusive supply of K to plant roots and the likely impact of K application strategies (banding v. broadcast and incorporation) on plant K uptake. Field studies investigating K application strategies (banding v. broadcasting) and the interaction with the degree of soil disturbance/mixing of different soil types are discussed in relation to K dynamics derived from glasshouse studies. Greater propensity to accumulate luxury K in crop biomass was observed in a Brown Ferrosol with a KBC lower than that of a Black Vertosol, consistent with more efficient diffusive supply to plant roots in the Ferrosol. This luxury K uptake, when combined with crops exhibiting low proportional removal of K in the harvested product (i.e. low K harvest index coarse grains and winter cereals) and residue retention, can lead to rapid re-development of stratified K profiles. There was clear evidence that some incorporation of K fertiliser into soil was required to facilitate root access and crop uptake, although there was no evidence of a need to incorporate K fertiliser any deeper than achieved by conventional disc tillage (i.e. 0.1-0.15 m). Recovery of fertiliser K applied in deep (0.25-0.3 m) bands in combination with N and P to facilitate root proliferation was quite poor in Red Ferrosols and Grey or Black Vertosols with moderate effective cation exchange capacity (ECEC, 25-35 cmol(+)/kg), was reasonable but not enough to overcome K deficiency in a Brown Dermosol (ECEC 11 cmol(+)/kg), but was quite good on a Black Vertosol (ECEC 50-60 cmol(+)/kg). Collectively, results suggest that frequent small applications of K fertiliser, preferably with some soil mixing, is an effective fertiliser application strategy on lighter clay soils with low KBC and an effective diffusive supply mechanism. Alternately, concentrated K bands and enhanced root proliferation around them may be a more effective strategy in Vertosol soils with high KBC and limited diffusive supply. Further studies to assess this hypothesis are needed.
Resumo:
Let X be a topological space and K the real algebra of the reals, the complex numbers, the quaternions, or the octonions. The functions form X to K form an algebra T(X,K) with pointwise addition and multiplication.
We study first-order definability of the constant function set N' corresponding to the set of the naturals in certain subalgebras of T(X,K).
In the vocabulary the symbols Constant, +, *, 0', and 1' are used, where Constant denotes the predicate defining the constants, and 0' and 1' denote the constant functions with values 0 and 1 respectively.
The most important result is the following. Let X be a topological space, K the real algebra of the reals, the compelex numbers, the quaternions, or the octonions, and R a subalgebra of the algebra of all functions from X to K containing all constants. Then N' is definable in
Resumo:
A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.
In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.
A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.
For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.
Resumo:
Let D be the differentiation operator Df = f' acting on the Fréchet space H of all entire functions in one variable with the standard (compact-open) topology. It is known since the 1950’s that the set H(D) of hypercyclic vectors for the operator D is non-empty. We treat two questions raised by Aron, Conejero, Peris and Seoane-Sepúlveda whether the set H(D) contains (up to the zero function) a non-trivial subalgebra of H or an infinite-dimensional closed linear subspace of H. In the present article both questions are answered affirmatively.
Resumo:
Double Degree. A Work Project, presented as part of the requirements for the Award of a Master’s Degree in Finance from NOVA – School of Business and Economics and a Masters Degree in Management from Louvain School of Management
Resumo:
Dans ce travail, nous exploitons des propriétés déjà connues pour les systèmes de poids des représentations afin de les définir pour les orbites des groupes de Weyl des algèbres de Lie simples, traitées individuellement, et nous étendons certaines de ces propriétés aux orbites des groupes de Coxeter non cristallographiques. D'abord, nous considérons les points d'une orbite d'un groupe de Coxeter fini G comme les sommets d'un polytope (G-polytope) centré à l'origine d'un espace euclidien réel à n dimensions. Nous introduisons les produits et les puissances symétrisées de G-polytopes et nous en décrivons la décomposition en des sommes de G-polytopes. Plusieurs invariants des G-polytopes sont présentés. Ensuite, les orbites des groupes de Weyl des algèbres de Lie simples de tous types sont réduites en l'union d'orbites des groupes de Weyl des sous-algèbres réductives maximales de l'algèbre. Nous listons les matrices qui transforment les points des orbites de l'algèbre en des points des orbites des sous-algèbres pour tous les cas n<=8 ainsi que pour plusieurs séries infinies des paires d'algèbre-sous-algèbre. De nombreux exemples de règles de branchement sont présentés. Finalement, nous fournissons une nouvelle description, uniforme et complète, des centralisateurs des sous-groupes réguliers maximaux des groupes de Lie simples de tous types et de tous rangs. Nous présentons des formules explicites pour l'action de tels centralisateurs sur les représentations irréductibles des algèbres de Lie simples et montrons qu'elles peuvent être utilisées dans le calcul des règles de branchement impliquant ces sous-algèbres.
Resumo:
We begin a study of torsion theories for representations of finitely generated algebras U over a field containing a finitely generated commutative Harish-Chandra subalgebra Gamma. This is an important class of associative algebras, which includes all finite W-algebras of type A over an algebraically closed field of characteristic zero, in particular, the universal enveloping algebra of gl(n) (or sl(n)) for all n. We show that any Gamma-torsion theory defined by the coheight of the prime ideals of Gamma is liftable to U. Moreover, for any simple U-module M, all associated prime ideals of M in Spec Gamma have the same coheight. Hence, the coheight of these associated prime ideals is an invariant of a given simple U-module. This implies the stratification of the category of U-modules controlled by the coheight of the associated prime ideals of Gamma. Our approach can be viewed as a generalization of the classical paper by Block (1981) [4]; it allows, in particular, to study representations of gl(n) beyond the classical category of weight or generalized weight modules. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Let A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded. Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One of the main tools of independent interest is the construction in the free non-associative algebra of multialternating polynomials satisfying special properties. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We classify all unital subalgebras of the Cayley algebra O(q) over the finite field F(q), q = p(n). We obtain the number of subalgebras of each type and prove that all isomorphic subalgebras are conjugate with respect to the automorphism group of O(q). We also determine the structure of the Moufang loops associated with each subalgebra of O(q).