959 resultados para Integrable equations in Physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct static soliton solutions with non-zero Hopf topological charges to a theory which is an extension of the Skyrme-Faddeev model by the addition of a further quartic term in derivatives. We use an axially symmetric ansatz based on toroidal coordinates, and solve the resulting two coupled non-linear partial differential equations in two variables by a successive over-relaxation (SOR) method. We construct numerical solutions with Hopf charge up to four, and calculate their analytical behavior in some limiting cases. The solutions present an interesting behavior under the changes of a special combination of the coupling constants of the quartic terms. Their energies and sizes tend to zero as that combination approaches a particular special value. We calculate the equivalent of the Vakulenko and Kapitanskii energy bound for the theory and find that it vanishes at that same special value of the coupling constants. In addition, the model presents an integrable sector with an in finite number of local conserved currents which apparently are not related to symmetries of the action. In the intersection of those two special sectors the theory possesses exact vortex solutions (static and time dependent) which were constructed in a previous paper by one of the authors. It is believed that such model describes some aspects of the low energy limit of the pure SU(2) Yang-Mills theory, and our results may be important in identifying important structures in that strong coupling regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct exact vortex solutions in 3+1 dimensions to a theory which is an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the efforts in the last decades those are the first exact analytical solutions to be constructed for such type of theory. The exact vortices appear in a very particular sector of the theory characterized by special values of the coupling constants, and by a constraint that leads to an infinite number of conserved charges. The theory is scale invariant in that sector, and the solutions satisfy Bogomolny type equations. The energy of the static vortex is proportional to its topological charge, and waves can travel with the speed of light along them, adding to the energy a term proportional to a U(1) No ether charge they create. We believe such vortices may play a role in the strong coupling regime of the pure SU(2) Yang-Mills theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrability of classical strings in the BTZ black hole enables the construction and study of classical string propagation in this background. We first apply the dressing method to obtain classical string solutions in the BTZ black hole. We dress time like geodesics in the BTZ black hole and obtain open string solutions which are pinned on the boundary at a single point and whose end points move on time like geodesics. These strings upon regularising their charge and spins have a dispersion relation similar to that of giant magnons. We then dress space like geodesics which start and end on the boundary of the BTZ black hole and obtain minimal surfaces which can penetrate the horizon of the black hole while being pinned at the boundary. Finally we embed the giant gluon solutions in the BTZ background in two different ways. They can be embedded as a spiral which contracts and expands touching the horizon or a spike which originates from the boundary and touches the horizon. © 2013 SISSA, Trieste, Italy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the deformed sine-Gordon models recently presented by Bazeia et al [1] to take the first steps towards defining the concept of quasi-integrability. We consider one such definition and use it to calculate an infinite number of quasi-conserved quantities through a modification of the usual techniques of integrable field theories. Performing an expansion around the sine-Gordon theory we are able to evaluate the charges and the anomalies of their conservation laws in a perturbative power series in a small parameter which describes the ""closeness"" to the integrable sine-Gordon model. We show that in the case of the two-soliton scattering the charges, up to first order of perturbation, are conserved asymptotically, i.e. their values are the same in the distant past and future, when the solitons are well separated. We indicate that this property may hold or not to higher orders depending on the behavior of the two-soliton solution under a special parity transformation. For closely bound systems, such as breather-like field configurations, the situation however is more complex and perhaps the anomalies have a different structure implying that the concept of quasi-integrability does not apply in the same way as in the scattering of solitons. We back up our results with the data of many numerical simulations which also demonstrate the existence of long lived breather-like and wobble-like states in these models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider modifications of the nonlinear Schrodinger model (NLS) to look at the recently introduced concept of quasi-integrability. We show that such models possess an in finite number of quasi-conserved charges which present intriguing properties in relation to very specific space-time parity transformations. For the case of two-soliton solutions where the fields are eigenstates of this parity, those charges are asymptotically conserved in the scattering process of the solitons. Even though the charges vary in time their values in the far past and the far future are the same. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. Our findings may have important consequences on the applications of these models in several areas of non-linear science. We make a detailed numerical study of the modified NLS potential of the form V similar to (vertical bar psi vertical bar(2))(2+epsilon), with epsilon being a perturbation parameter. We perform numerical simulations of the scattering of solitons for this model and find a good agreement with the results predicted by the analytical considerations. Our paper shows that the quasi-integrability concepts recently proposed in the context of modifications of the sine-Gordon model remain valid for perturbations of the NLS model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new Skyrme-like model with fields taking values on the sphere S3 or, equivalently, on the group SU(2). The action of the model contains a quadratic kinetic term plus a quartic term which is the same as that of the Skyrme-Faddeev model. The novelty of the model is that it possess a first order Bogomolny type equation whose solutions automatically satisfy the second order Euler-Lagrange equations. It also possesses a lower bound on the static energy which is saturated by the Bogomolny solutions. Such Bogomolny equation is equivalent to the so-called force free equation used in plasma and solar Physics, and which possesses large classes of solutions. An old result due to Chandrasekhar prevents the existence of finite energy solutions for the force free equation on the entire three- dimensional space R3. We construct new exact finite energy solutions to the Bogomolny equations for the case where the space is the three-sphere S3, using toroidal like coordinates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the implementation of a method of solving initial boundary value problems in the case of integrable evolution equations in a time-dependent domain. This method is applied to a dispersive linear evolution equation with spatial derivatives of arbitrary order and to the defocusing nonlinear Schrödinger equation, in the domain l(t)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eigenfunctions of integrable planar billiards are studied - in particular, the number of nodal domains, nu of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrodinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and nonseparable integrable billiards, nu satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of m mod kn, given a particular k, for a set of quantum numbers, m, n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. (C) 2014 Elsevier Inc. All rights reserved.