986 resultados para Instrumental variable regression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the instrumental variable regression model when there is uncertainty about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainty can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov chain Monte Carlo algorithm that allows us to do Bayesian model averaging. The algorithm is very exible and can be easily adapted to analyze any of the di¤erent priors that have been proposed in the Bayesian instrumental variables literature. We show how to calculate the probability of any relevant restriction (e.g. the posterior probability that over-identifying restrictions hold) and discuss diagnostic checking using the posterior distribution of discrepancy vectors. We illustrate our methods in a returns-to-schooling application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers two-sided tests for the parameter of an endogenous variable in an instrumental variable (IV) model with heteroskedastic and autocorrelated errors. We develop the nite-sample theory of weighted-average power (WAP) tests with normal errors and a known long-run variance. We introduce two weights which are invariant to orthogonal transformations of the instruments; e.g., changing the order in which the instruments appear. While tests using the MM1 weight can be severely biased, optimal tests based on the MM2 weight are naturally two-sided when errors are homoskedastic. We propose two boundary conditions that yield two-sided tests whether errors are homoskedastic or not. The locally unbiased (LU) condition is related to the power around the null hypothesis and is a weaker requirement than unbiasedness. The strongly unbiased (SU) condition is more restrictive than LU, but the associated WAP tests are easier to implement. Several tests are SU in nite samples or asymptotically, including tests robust to weak IV (such as the Anderson-Rubin, score, conditional quasi-likelihood ratio, and I. Andrews' (2015) PI-CLC tests) and two-sided tests which are optimal when the sample size is large and instruments are strong. We refer to the WAP-SU tests based on our weights as MM1-SU and MM2-SU tests. Dropping the restrictive assumptions of normality and known variance, the theory is shown to remain valid at the cost of asymptotic approximations. The MM2-SU test is optimal under the strong IV asymptotics, and outperforms other existing tests under the weak IV asymptotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis project is motivated by the potential problem of using observational data to draw inferences about a causal relationship in observational epidemiology research when controlled randomization is not applicable. Instrumental variable (IV) method is one of the statistical tools to overcome this problem. Mendelian randomization study uses genetic variants as IVs in genetic association study. In this thesis, the IV method, as well as standard logistic and linear regression models, is used to investigate the causal association between risk of pancreatic cancer and the circulating levels of soluble receptor for advanced glycation end-products (sRAGE). Higher levels of serum sRAGE were found to be associated with a lower risk of pancreatic cancer in a previous observational study (255 cases and 485 controls). However, such a novel association may be biased by unknown confounding factors. In a case-control study, we aimed to use the IV approach to confirm or refute this observation in a subset of study subjects for whom the genotyping data were available (178 cases and 177 controls). Two-stage IV method using generalized method of moments-structural mean models (GMM-SMM) was conducted and the relative risk (RR) was calculated. In the first stage analysis, we found that the single nucleotide polymorphism (SNP) rs2070600 of the receptor for advanced glycation end-products (AGER) gene meets all three general assumptions for a genetic IV in examining the causal association between sRAGE and risk of pancreatic cancer. The variant allele of SNP rs2070600 of the AGER gene was associated with lower levels of sRAGE, and it was neither associated with risk of pancreatic cancer, nor with the confounding factors. It was a potential strong IV (F statistic = 29.2). However, in the second stage analysis, the GMM-SMM model failed to converge due to non- concaveness probably because of the small sample size. Therefore, the IV analysis could not support the causality of the association between serum sRAGE levels and risk of pancreatic cancer. Nevertheless, these analyses suggest that rs2070600 was a potentially good genetic IV for testing the causality between the risk of pancreatic cancer and sRAGE levels. A larger sample size is required to conduct a credible IV analysis.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bayesian analysis is given of an instrumental variable model that allows for heteroscedasticity in both the structural equation and the instrument equation. Specifically, the approach for dealing with heteroscedastic errors in Geweke (1993) is extended to the Bayesian instrumental variable estimator outlined in Rossi et al. (2005). Heteroscedasticity is treated by modelling the variance for each error using a hierarchical prior that is Gamma distributed. The computation is carried out by using a Markov chain Monte Carlo sampling algorithm with an augmented draw for the heteroscedastic case. An example using real data illustrates the approach and shows that ignoring heteroscedasticity in the instrument equation when it exists may lead to biased estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a note about proxy variables and instruments for identification of structural parameters in regression models. We have experienced that in the econometric textbooks these two issues are treated separately, although in practice these two concepts are very often combined. Usually, proxy variables are inserted in instrument variable regressions with the motivation they are exogenous. Implicitly meaning they are exogenous in a reduced form model and not in a structural model. Actually if these variables are exogenous they should be redundant in the structural model, e.g. IQ as a proxy for ability. Valid proxies reduce unexplained variation and increases the efficiency of the estimator of the structural parameter of interest. This is especially important in situations when the instrument is weak. With a simple example we demonstrate what is required of a proxy and an instrument when they are combined. It turns out that when a researcher has a valid instrument the requirements on the proxy variable is weaker than if no such instrument exists

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação se propõe ao estudo de inferência usando estimação por método generalizado dos momentos (GMM) baseado no uso de instrumentos. A motivação para o estudo está no fato de que sob identificação fraca dos parâmetros, a inferência tradicional pode levar a resultados enganosos. Dessa forma, é feita uma revisão dos mais usuais testes para superar tal problema e uma apresentação dos arcabouços propostos por Moreira (2002) e Moreira & Moreira (2013), e Kleibergen (2005). Com isso, o trabalho concilia as estatísticas utilizadas por eles para realizar inferência e reescreve o teste score proposto em Kleibergen (2005) utilizando as estatísticas de Moreira & Moreira (2013), e é obtido usando a teoria assintótica em Newey & McFadden (1984) a estatística do teste score ótimo. Além disso, mostra-se a equivalência entre a abordagem por GMM e a que usa sistema de equações e verossimilhança para abordar o problema de identificação fraca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we focus on tests for the parameter of an endogenous variable in a weakly identi ed instrumental variable regressionmodel. We propose a new unbiasedness restriction for weighted average power (WAP) tests introduced by Moreira and Moreira (2013). This new boundary condition is motivated by the score e ciency under strong identi cation. It allows reducing computational costs of WAP tests by replacing the strongly unbiased condition. This latter restriction imposes, under the null hypothesis, the test to be uncorrelated to a given statistic with dimension given by the number of instruments. The new proposed boundary condition only imposes the test to be uncorrelated to a linear combination of the statistic. WAP tests under both restrictions to perform similarly numerically. We apply the di erent tests discussed to an empirical example. Using data from Yogo (2004), we assess the e ect of weak instruments on the estimation of the elasticity of inter-temporal substitution of a CCAPM model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of informal institutions and in particular culture for entrepreneurship is a subject of ongoing interest. Past research has mostly concentrated on cross-national comparisons, cultural values, and the direct effects of culture on entrepreneurial behavior, but in the main found inconsistent results. The present research adds a fresh perspective to this research stream by turning attention to community-level culture and cultural norms. We hypothesize indirect effects of cultural norms on venture emergence. Specifically that community-level cultural norms (performance-based culture and socially-supportive institutional norms) impact important supply-side variables (entrepreneurial self-efficacy and entrepreneurial motivation) which in turn influence nascent entrepreneurs’ success in creating operational ventures (venture emergence). We test our predictions on a unique longitudinal data set (PSED II) tracking nascent entrepreneurs venture creation efforts over a 5 year time span and find evidence supporting them. Our research contributes to a more fine-grained understanding of how culture, in particular perceptions of community cultural norms, influences venture emergence. This research highlights the embeddedness of entrepreneurial behavior and its immediate antecedent beliefs in the local, community context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social scientists often estimate models from correlational data, where the independent variable has not been exogenously manipulated; they also make implicit or explicit causal claims based on these models. When can these claims be made? We answer this question by first discussing design and estimation conditions under which model estimates can be interpreted, using the randomized experiment as the gold standard. We show how endogeneity--which includes omitted variables, omitted selection, simultaneity, common methods bias, and measurement error--renders estimates causally uninterpretable. Second, we present methods that allow researchers to test causal claims in situations where randomization is not possible or when causal interpretation is confounded, including fixed-effects panel, sample selection, instrumental variable, regression discontinuity, and difference-in-differences models. Third, we take stock of the methodological rigor with which causal claims are being made in a social sciences discipline by reviewing a representative sample of 110 articles on leadership published in the previous 10 years in top-tier journals. Our key finding is that researchers fail to address at least 66 % and up to 90 % of design and estimation conditions that make causal claims invalid. We conclude by offering 10 suggestions on how to improve non-experimental research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social scientists often estimate models from correlational data, where the independent variable has not been exogenously manipulated; they also make implicit or explicit causal claims based on these models. When can these claims be made? We answer this question by first discussing design and estimation conditions under which model estimates can be interpreted, using the randomized experiment as the gold standard. We show how endogeneity--which includes omitted variables, omitted selection, simultaneity, common methods bias, and measurement error--renders estimates causally uninterpretable. Second, we present methods that allow researchers to test causal claims in situations where randomization is not possible or when causal interpretation is confounded, including fixed-effects panel, sample selection, instrumental variable, regression discontinuity, and difference-in-differences models. Third, we take stock of the methodological rigor with which causal claims are being made in a social sciences discipline by reviewing a representative sample of 110 articles on leadership published in the previous 10 years in top-tier journals. Our key finding is that researchers fail to address at least 66 % and up to 90 % of design and estimation conditions that make causal claims invalid. We conclude by offering 10 suggestions on how to improve non-experimental research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation deals with the problem of making inference when there is weak identification in models of instrumental variables regression. More specifically we are interested in one-sided hypothesis testing for the coefficient of the endogenous variable when the instruments are weak. The focus is on the conditional tests based on likelihood ratio, score and Wald statistics. Theoretical and numerical work shows that the conditional t-test based on the two-stage least square (2SLS) estimator performs well even when instruments are weakly correlated with the endogenous variable. The conditional approach correct uniformly its size and when the population F-statistic is as small as two, its power is near the power envelopes for similar and non-similar tests. This finding is surprising considering the bad performance of the two-sided conditional t-tests found in Andrews, Moreira and Stock (2007). Given this counter intuitive result, we propose novel two-sided t-tests which are approximately unbiased and can perform as well as the conditional likelihood ratio (CLR) test of Moreira (2003).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Zero correlation between measurement error and model error has been assumed in existing panel data models dealing specifically with measurement error. We extend this literature and propose a simple model where one regressor is mismeasured, allowing the measurement error to correlate with model error. Zero correlation between measurement error and model error is a special case in our model where correlated measurement error equals zero. We ask two research questions. First, we wonder if the correlated measurement error can be identified in the context of panel data. Second, we wonder if classical instrumental variables in panel data need to be adjusted when correlation between measurement error and model error cannot be ignored. Under some regularity conditions the answer is yes to both questions. We then propose a two-step estimation corresponding to the two questions. The first step estimates correlated measurement error from a reverse regression; and the second step estimates usual coefficients of interest using adjusted instruments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several methods have been suggested to estimate non-linear models with interaction terms in the presence of measurement error. Structural equation models eliminate measurement error bias, but require large samples. Ordinary least squares regression on summated scales, regression on factor scores and partial least squares are appropriate for small samples but do not correct measurement error bias. Two stage least squares regression does correct measurement error bias but the results strongly depend on the instrumental variable choice. This article discusses the old disattenuated regression method as an alternative for correcting measurement error in small samples. The method is extended to the case of interaction terms and is illustrated on a model that examines the interaction effect of innovation and style of use of budgets on business performance. Alternative reliability estimates that can be used to disattenuate the estimates are discussed. A comparison is made with the alternative methods. Methods that do not correct for measurement error bias perform very similarly and considerably worse than disattenuated regression

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Obesity has been shown to be associated with depression and it has been suggested that higher body mass index (BMI) increases the risk of depression and other common mental disorders. However, the causal relationship remains unclear and Mendelian randomisation, a form of instrumental variable analysis, has recently been employed to attempt to resolve this issue. AIMS: To investigate whether higher BMI increases the risk of major depression. METHOD: Two instrumental variable analyses were conducted to test the causal relationship between obesity and major depression in RADIANT, a large case-control study of major depression. We used a single nucleotide polymorphism (SNP) in FTO and a genetic risk score (GRS) based on 32 SNPs with well-established associations with BMI. RESULTS: Linear regression analysis, as expected, showed that individuals carrying more risk alleles of FTO or having higher score of GRS had a higher BMI. Probit regression suggested that higher BMI is associated with increased risk of major depression. However, our two instrumental variable analyses did not support a causal relationship between higher BMI and major depression (FTO genotype: coefficient -0.03, 95% CI -0.18 to 0.13, P = 0.73; GRS: coefficient -0.02, 95% CI -0.11 to 0.07, P = 0.62). CONCLUSIONS: Our instrumental variable analyses did not support a causal relationship between higher BMI and major depression. The positive associations of higher BMI with major depression in probit regression analyses might be explained by reverse causality and/or residual confounding.